206 research outputs found
The ORNL-SNAP shielding program
The effort in the ORNL-SNAP shielding program is directed toward the development and verification of computer codes using numerical solutions to the transport equation for the design of optimized radiation shields for SNAP power systems. A brief discussion is given for the major areas of the SNAP shielding program, which are cross-section development, transport code development, and integral experiments. Detailed results are presented for the integral experiments utilizing the TSF-SNAP reactor. Calculated results are compared with experiments for neutron and gamma-ray spectra from the bare reactor and as transmitted through slab shields
Low-energy electron transport with the method of discrete ordinates
The one-dimensional discrete ordinates code ANISN was adapted to transport low energy (a few MeV) electrons. Calculated results obtained with ANISN were compared with experimental data for transmitted electron energy and angular distribution data for electrons normally incident on aluminum slabs of various thicknesses. The calculated and experimental results are in good agreement for a thin slab (0.2 of the electron range), but not for the thicker slabs (0.6 of the electron range). Calculated results obtained with ANISN were also compared with results obtained using Monte Carlo methods
"Notjustgirls": Exploring Male-related Eating Disordered Content across Social Media Platforms
Eating disorders (EDs) are a worldwide public health concern that impact approximately 10% of the U.S. population. Our previous research characterized these behaviors across online spaces. These characterizations have used clinical terminology, and their lexical variants, to identify ED content online. However, previous HCI research on EDs (including our own) suffers from a lack of gender and cultural diversity. In this paper, we designed a follow-up study of online ED characterizations, extending our previous methodologies to focus specifically on male/masculine-related content. We highlight the similarities and differences found in the terminology utilized and media archetypes associated with the social media content. Finally, we discuss other considerations highlighted through our analysis of the male-related content that is missing from the previous research
Cross-talk among gp130 cytokines in adipocytes
The interleukin-6 (IL-6) family of cytokines is a family of structurally and functionally related proteins, including IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1). These proteins are also known as gp130 cytokines because they all share gp130 as a common transducer protein within their functional receptor complexes. Several of these cytokines (LIF, OSM, CNTF, and CT-1) also utilize the LIF receptor (LIFR) as a component of their receptor complex. We have shown that all of these cytokines are capable of activating both the JAK/STAT and p42/44 mitogen-activated protein kinase signaling pathways in 3T3-L1 adipocytes. By performing a variety of preincubation studies and examining the ability of these cytokines to activate STATs, ERKs, and induce transcription of SOCS-3 mRNA, we have also examined the ability of gp130 cytokines to modulate the action of their family members. Our results indicate that a subset of gp130 cytokines, in particular CT-1, LIF, and OSM, has the ability to impair subsequent signaling activity initiated by gp130 cytokines. However, IL-6 and CNTF do not exhibit this cross-talk ability. Moreover, our results indicate that the cross-talk among gp130 cytokines is mediated by the ability of these cytokines to induce ligand-dependent degradation of the LIFR, in a proteasome-independent manner, which coincides with decreased levels of LIFR at the plasma membrane. In summary, our results demonstrate that an inhibitory cross-talk among specific gp130 cytokines in 3T3-L1 adipocytes occurs as a result of specific degradation of LIFR via a lysosome-mediated pathway. © 2005 by The American Society for Biochemistry and Molecular Biology, Inc
Circadian Clocks Are Resounding in Peripheral Tissues
Circadian rhythms are prevalent in most organisms. Even the smallest disturbances in the orchestration of circadian gene expression patterns among different tissues can result in functional asynchrony, at the organism level, and may to contribute to a wide range of physiologic disorders. It has been reported that as many as 5%–10% of transcribed genes in peripheral tissues follow a circadian expression pattern. We have conducted a comprehensive study of circadian gene expression on a large dataset representing three different peripheral tissues. The data have been produced in a large-scale microarray experiment covering replicate daily cycles in murine white and brown adipose tissues as well as in liver. We have applied three alternative algorithmic approaches to identify circadian oscillation in time series expression profiles. Analyses of our own data indicate that the expression of at least 7% to 21% of active genes in mouse liver, and in white and brown adipose tissues follow a daily oscillatory pattern. Indeed, analysis of data from other laboratories suggests that the percentage of genes with an oscillatory pattern may approach 50% in the liver. For the rest of the genes, oscillation appears to be obscured by stochastic noise. Our phase classification and computer simulation studies based on multiple datasets indicate no detectable boundary between oscillating and non-oscillating fractions of genes. We conclude that greater attention should be given to the potential influence of circadian mechanisms on any biological pathway related to metabolism and obesity
Impaired mitochondrial fat oxidation induces adaptive remodeling of muscle metabolism
© 2015, National Academy of Sciences. All rights reserved. The correlations between intramyocellular lipid (IMCL), decreased fatty acid oxidation (FAO), and insulin resistance have led to the hypothesis that impaired FAO causes accumulation of lipotoxic intermediates that inhibit muscle insulin signaling. Using a skeletal muscle-specific carnitine palmitoyltransferase-1 KO model, we show that prolonged and severe mitochondrial FAO inhibition results in increased carbohydrate utilization, along with reduced physical activity; increased circulating nonesterified fatty acids; and increased IMCLs, diacylglycerols, and ceramides. Perhaps more importantly, inhibition of mitochondrial FAO also initiates a local, adaptive response in muscle that invokes mitochondrial biogenesis, compensatory peroxisomal fat oxidation, and amino acid catabolism. Loss of its major fuel source (lipid) induces an energy deprivation response in muscle coordinated by signaling through AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) to maintain energy supply for locomotion and survival. At the whole-body level, these adaptations result in resistance to obesity
The ubiquitin ligase Siah2 regulates obesity-induced adipose tissue inflammation
© 2015 The Obesity Society. Objective Chronic, low-grade adipose tissue inflammation associated with adipocyte hypertrophy is an important link in the relationship between obesity and insulin resistance. Although ubiquitin ligases regulate inflammatory processes, the role of these enzymes in metabolically driven adipose tissue inflammation is relatively unexplored. Herein, the effect of the ubiquitin ligase Siah2 on obesity-related adipose tissue inflammation was examined. Methods Wild-type and Siah2KO mice were fed a low- or high-fat diet for 16 weeks. Indirect calorimetry, body composition, and glucose and insulin tolerance were assayed along with glucose and insulin levels. Gene and protein expression, immunohistochemistry, adipocyte size distribution, and lipolysis were also analyzed. Results Enlarged adipocytes in obese Siah2KO mice were not associated with obesity-induced insulin resistance. Proinflammatory gene expression, stress kinase signaling, fibrosis, and crown-like structures were reduced in the Siah2KO adipose tissue, and Siah2KO adipocytes were more responsive to insulin-dependent inhibition of lipolysis. Loss of Siah2 increased expression of PPARγ target genes involved in lipid metabolism and decreased expression of proinflammatory adipokines regulated by PPARγ. Conclusions Siah2 links adipocyte hypertrophy with adipocyte dysfunction and recruitment of proinflammatory immune cells to adipose tissue. Selective regulation of PPARγ activity is a Siah2-mediated mechanism contributing to obesity-induced adipose tissue inflammation
Impaired Mitochondrial Fat Oxidation Induces FGF21 in Muscle
SummaryFatty acids are the primary fuel source for skeletal muscle during most of our daily activities, and impaired fatty acid oxidation (FAO) is associated with insulin resistance. We have developed a mouse model of impaired FAO by deleting carnitine palmitoyltransferase-1b specifically in skeletal muscle (Cpt1bm−/−). Cpt1bm−/− mice have increased glucose utilization and are resistant to diet-induced obesity. Here, we show that inhibition of mitochondrial FAO induces FGF21 expression specifically in skeletal muscle. The induction of FGF21 in Cpt1b-deficient muscle is dependent on AMPK and Akt1 signaling but independent of the stress signaling pathways. FGF21 appears to act in a paracrine manner to increase glucose uptake under low insulin conditions, but it does not contribute to the resistance to diet-induced obesity
- …