28 research outputs found

    Nutritional characterisation of low-income households of Nairobi: socioeconomic, livestock and gender considerations and predictors of malnutrition from a cross-sectional survey

    Get PDF
    Background: In sub-Saharan Africa, urban informal settlements are rapidly expanding, leading to overcrowding and constituting challenging environments for food and water supplies, health and nutrition. The study objectives were to characterise and compare two low-income areas of Nairobi according to socioeconomic (including livestock and gender) indicators and the nutritional status of non-pregnant women of reproductive age and 1 to 3 year-old children; and to investigate socioeconomic predictors of malnutrition in these areas. Methods: In this cross-sectional survey 205 low-income households in deprived areas of Dagoretti and Korogocho (Nairobi) were randomly selected. Socioeconomic data were collected via an interviewer-administered questionnaire. Maternal and child dietary data were collected by a 24-h dietary recall. Maternal and child anthropometric and haemoglobin measurements were taken. Chi-square, t-test and Wilcoxon-Mann–Whitney test were used to compare groups and multivariable linear regression to assess predictors of malnutrition. Results: Dagoretti consistently showed better socioeconomic indicators including: income, education and occupation of household head, land ownership, housing quality and domestic asset ownership. Animal ownership was more than twice as high in Dagoretti as in Korogocho (53.0 % vs 22.9 % of households; p-value < 0.0001). A double burden of malnutrition existed: 41.5 % of children were stunted, and 29.0 % of women were overweight. In addition, 74.0 % of the children and 25.9 % of the women were anaemic, and were at risk of inadequate intakes for a number of micronutrients. Nutritional status and nutrient intakes were consistently better in Dagoretti than Korogocho; height-for-age (0.47 Z-scores higher; p-value = 0.004), the minimum dietary diversity (80.0 % vs 57.7 % in children, p-value = 0.001) and intakes of several nutrients were significantly higher. Positive predictors of maternal nutritional status were income, age and not having a premature delivery. Positive predictors of child nutritional status were area, household head education, mother not being married, female animal ownership and child’s sex (female). Conclusions: Malnutrition is prevalent in these settings, which could be partly due to low nutrient intakes, and to socioeconomic factors (including poverty), thus requiring comprehensive approaches that include increased accessibility and affordability of nutrient-dense foods. This study indicates that differences among low-income areas may need consideration for prioritisation and design of interventions

    Community-based surveillance of zoonotic parasites in a ‘One Health’ world: A systematic review

    Get PDF
    AbstractThe One Health (OH) concept provides an integrated framework for observing and improving health issues involving human, animal, and environmental factors, and has been applied in particular to zoonotic disease problems. We conducted a systematic review of English and Chinese language peer-reviewed and grey literature databases to identify zoonotic endoparasite research utilizing an OH approach in community-based settings. Our review identified 32 articles where specimens collected simultaneously from all three OH domains (people, animals, and the environment) were assessed for endoparasite infection or exposure. Study sites spanned 23 countries, and research teams brought together an average of seven authors from two countries. Surveillance of blood-borne and gastrointestinal protozoa were most frequently reported (19 of 32; 59%), followed by trematodes, nematodes, and cestodes. Laboratory techniques varied greatly between studies, and only 16 identified parasites using Polymerase Chain Reaction (PCR) in all three OH domains. Our review identified important gaps in parasitology research operating under an OH framework. We recommend that investigators working in the realm of zoonotic disease strive to evaluate all three OH domains by integrating modern molecular tools as well as techniques provided by economists and social scientists

    Technologies for Detecting Falsified and Substandard Drugs in Low and Middle-Income Countries

    No full text
    <div><p>Falsified and substandard drugs are a global health problem, particularly in low- and middle-income countries (LMIC) that have weak pharmacovigilance and drug regulatory systems. Poor quality medicines have important health consequences, including the potential for treatment failure, development of antimicrobial resistance, and serious adverse drug reactions, increasing healthcare costs and undermining the public's confidence in healthcare systems. This article presents a review of the methods employed for the analysis of pharmaceutical formulations. Technologies for detecting substandard and falsified drugs were identified primarily through literature reviews. Key-informant interviews with experts augmented our methods when warranted. In order to aid comparisons, technologies were assigned a suitability score for use in LMIC ranging from 0–8. Scores measured the need for electricity, need for sample preparation, need for reagents, portability, level of training required, and speed of analysis. Technologies with higher scores were deemed the most feasible in LMICs. We categorized technologies that cost 10,000USDorlessaslowcost,10,000 USD or less as low cost, 10,000–100,000 USD as medium cost and those greater than $100,000 USD as high cost technologies (all prices are 2013 USD). This search strategy yielded information on 42 unique technologies. Five technologies were deemed both low cost and had feasibility scores between 6–8, and an additional four technologies had medium cost and high feasibility. Twelve technologies were deemed portable and therefore could be used in the field. Many technologies can aid in the detection of substandard and falsified drugs that vary from the simplest of checklists for packaging to the most complex mass spectrometry analyses. Although there is no single technology that can serve all the requirements of detecting falsified and substandard drugs, there is an opportunity to bifurcate the technologies into specific niches to address specific sections within the workflow process of detecting products.</p></div

    Technologies for confirmation testing.

    No full text
    <p>*Technologies that cost <10,000USD = lowcost,10,000 USD = low cost, 10,000–100,000 USD = medium cost and >$100,000 USD = high cost.</p><p>** Suitability for use in LMIC scores were assigned as: 1 point for not requiring sample preparation, 1 point for not requiring laboratory supplies, 1 point for fast speed, 1 for not requiring electricity, 2 points for requiring minimal training and 1 point for requiring a laboratory technician, 2 points for being portable and 1 point for requiring a basic laboratory.</p>∧<p>GC-MS represents the combination of a sample preparation technology, ionization technology and mass detector which is portable. This is the only mass detector combination that is portable.</p

    Comparison of technologies for detecting the presence of the correct API.

    No full text
    <p>* Suitability for use in LMIC scores were assigned as: 1 point for not requiring sample preparation, 1 point for not requiring laboratory supplies, 1 point for fast speed, 1 for not requiring electricity, 2 points for requiring minimal training and 1 point for requiring a laboratory technician, 2 points for being portable and 1 point for requiring a basic laboratory. High scores = 6–8, medium scores = 3–5, low scores = 0–2.</p><p>** Technologies that cost <10,000USD = lowcost,10,000 USD = low cost, 10,000–100,000 USD = medium cost and >$100,000 USD = high cost.</p><p>Counterfeit Device #3 (CD3), Micellar Electrokinetic Capillary Chromatography (MECC), Thin Layer Chromatography (TLC)-Fast Chemical Identification System (FCIS), Near infrared (NIR), Fourier transform infrared (FTIR), and High performance liquid chromatography (HPLC).</p
    corecore