190 research outputs found

    Carbon nanotube array as a van der Waals two-dimensional hyperbolic material

    Get PDF
    We use an ab-initio approach to design and study a novel two-dimensional material - a planar array of carbon nanotubes separated by an optimal distance defined by the van der Waals interaction. We show that the energy spectrum for an array of quasi-metallic nanotubes is described by a strongly anisotropic hyperbolic dispersion and formulate a model low-energy Hamiltonian for its semi-analytical treatment. Periodic-potential-induced lifting of the valley degeneracy for an array of zigzag narrow-gap nanotubes leads to the band gap collapse. In contrast, the band gap is opened in an array of gapless armchair tubes. These unusual spectra, marked by pronounced van Hove singularities in the low-energy density of states, open the opportunity for interesting physical effects and prospective optoelectronic applications

    Wear Mechanisms of Hydrogenated DLC in Oils Containing MoDTC

    Get PDF
    Diamond-Like Carbon (DLC) coatings are well known for offering excellent tribological properties. They have been shown to offer low friction and outstanding wear performance in both dry and lubricated conditions. Application of these coatings for automotive components is considered as a promising strategy to cope with the emerging requirements regarding fuel economy and durability. Commercially available oils are generally optimised to work on conventional ferrous surfaces and are not necessarily effective in lubricating non-ferrous surfaces. Recently, the adverse effect of the Molybdenum DialkyldithioCarbamate (MoDTC) friction modifier additive on the wear performance of the hydrogenated DLC has been reported. However, the mechanisms by which MoDTC imposes this high wear to DLC are not yet well understood. A better understanding of DLC wear may potentially lead to better compatibility between DLC surfaces and current additive technology being achieved. In this work, the wear properties of DLC coatings in the DLC/cast iron (CI) system under boundary lubrication conditions have been investigated to try to understand what appears to be a tribocorrosion-type process. A pin-on-plate tribotester was used to run the experiments using High Speed Steel (HSS) plates coated with 15 at.% hydrogenated DLC (a-C:15H) sliding against CI pins or ceramic balls. The lubricants used in this study are typical examples of the same fully formulated oil with and without ZDDP. The friction and wear responses of the fully formulated oils are discussed in detail. Furthermore, Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray spectroscopy (EDX), Focused Ion Beam (FIB) and Transmission Electron Microscopy (TEM) were used to observe the wear scar and propose wear mechanisms. The X-ray Photoelectron Spectroscopy (XPS) analysis was performed on the tribofilms to understand the tribochemical interactions between oil additives and the DLC coating. Nano-indentation analysis was conducted to assess potential structural modifications of the DLC coating. Coating hardness data could provide a better insight into the wear mode and failure mechanism of such hard coatings. Given the obtained results, the wear behaviour of the hydrogenated DLC coating was found to depend not only on the presence of ZDDP in the oil formulation but also on the counterpart type. This study revealed that the steel counterpart is a critical component of the tribocouple leading to MoDTC-induced wear of the hydrogenated DLC

    Cathode Active Material Recycling from Spent Lithium Batteries: A Green (Circular) Approach Based on Deep Eutectic Solvents

    Get PDF
    The transition to a circular economy vision must handle the increasing request of metals required to satisfy the battery industry; this can be obtained by recycling and feeding back secondary raw materials recovered through proper waste management. Here, a novel and green proof-of-concept was developed, based on deep eutectic solvents (DESs) to fully and easily recover valuable metals from various cathode active materials, including LiMn2O4, LiNi0.5Mn1.5O4, and LiNi0.8Co0.2O2. DES composed of choline chloride and lactic acid could leach Li, Mn, Co, and Ni, achieving efficiency of 100 % under much milder conditions with respect to the previous literature. For the first time, to our best knowledge, a two-step approach was reported in the case of LiNi0.8Co0.2O2 for selective recovery of Li, Co, and Ni with high yield and purity. Furthermore, other cathode components, namely aluminum current collector and binder, were found to be not dissolved by the proposed DES, thus making a simple separation from the active material possible. Finally, this strategy was designed to easily regenerate and reuse the leaching solvents for more than one extraction, thus further boosting process sustainability

    The effect of MoDTC-type friction modifier on the wear performance of a hydrogenated DLC coating

    No full text
    The application of Diamond-Like Carbon (DLC) coatings for automotive components is becoming a promising strategy to cope with the new challenges faced by automotive industries. DLC coatings simultaneously provide low friction and excellent wear resistance which could potentially improve fuel economy and durability of the engine components in contact. The mechanisms by which a non-ferrous material interacts with a variety of lubricant additives is becoming better understood as the research effort in this area increases however there are still significant gaps in the understanding. A better understanding of DLC wear may lead to lubricant additive solutions being tailored for DLC surfaces to provide excellent durability (wear) as well as similar or increased fuel economy (low friction). In this work, the wear and friction properties of DLC coating under boundary lubrication conditions have been investigated. A pin-on-plate tribotester was used to run the experiments using HSS steel plates coated with 15 at% hydrogenated DLC (a-C:15H) sliding against cast iron pins. One type of fully formulated oil with and without ZDDP and two levels of a MoDTC type friction modifier (Mo-FM) was used in this study. The friction and wear response of the fully formulated oils is discussed in detail. Furthermore, Optical Microscope and Scanning Electron Microscopy (SEM) were used to observe the wear scar and obtain wear mechanisms. Energy-Dispersive X-ray analysis (EDX) and X-ray Photoelectron Spectroscopy (XPS) analysis were performed on the tribofilms to understand the tribochemical interactions between oil additives and the DLC coating. A nano-indentation study was conducted to observe the changes in the structure of the coating, which can provide a better insight into the wear mode and failure mechanism of such hard coatings. In the light of the physical observations and tribochemical analysis of the wear scar, the wear behaviour of a hydrogenated DLC (a-C:15H) coating was found to depend on the concentration of the MoDTC friction modifier and the wear performance is much better when ZDDP is present in the oil. The tribochemical mechanisms, which contribute to this behaviour, are discussed in this paper

    Audience responses to representations of family-assisted suicide on British television

    Get PDF
    Reflecting on different generic conventions, this study highlights the strengths and weaknesses of documentaries and soap operas in addressing the societal and the personal dimensions of family-assisted suicide. Based on an analysis of YouTube user comments, this study compares how audience members respond to representations of family-assisted suicide in British documentaries and soap operas broadcast between 2010 and 2016. The thematic analysis of comments shows key differences between audience engagement with factual and fictional representations. Markers of a political engagement with this sensitive social issue occur more frequently in comments on documentaries than in comments on soap operas. Comments on soap operas are frequently expressions of emotion, or displays of specialist soap opera knowledge

    Corrosive-Abrasive Wear Induced by Soot in Boundary Lubrication Regime

    Get PDF
    Soot is known to induce high wear in engine components. The mechanism by which soot induces wear is not well understood. Although several mechanisms have been suggested, there is still no consensus. This study aims to investigate the most likely mechanism responsible for soot-induced wear in the boundary lubrication regime. Results from this study have shown that previously suggested mechanisms such as abrasion and additive adsorption do not fully explain the high wear observed when soot is present. Based on the results obtained from tests conducted at varying temperature and soot levels, it has been proven that the corrosive–abrasive mechanism was responsible for high wear that occurred in boundary lubrication conditions
    • …
    corecore