76 research outputs found

    Cyclosporin in idiopathic glomerular disease associated with the nephrotic syndrome : Workshop recommendations

    Get PDF
    Management of idiopathic glomerular disease associated with nephrotic syndrome (INS) remains controversial and one of the most complex areas relates to utilization of the drug cyclosporin. This is despite its demonstrated effectiveness in several histologic types of the INS in randomized controlled trials. Cyclosporin is effective in inducing remission of proteinuria in approximately 80% of steroid-sensitive cases of minimal change disease (MCD). Cyclosporin is also effective in both the induction of remission and long-term preservation of renal function in steroid-dependent/-resistant MCD and steroid-resistant focal segmental glomerulosclerosis (FSGS). The overall response rate in FSGS is lower than in MCD, and long-term therapy (>12 months) may be required to both achieve remission and sustain it. Cyclosporin therapy is also of benefit in reducing proteinuria in 70-80% of patients with steroid-resistant membranous nephropathy (MGN). In MGN, the maximum benefit is often delayed compared to MCD (>12 weeks). Cyclosporin is generally well tolerated and safe. The major concern remains the nephrotoxicity, but with careful monitoring of the patient's renal function; minimizing the maintenance dose and utilizing repeat renal biopsy in those receiving long-term therapy, this risk can be minimized. The algorithms have been developed derived from the best evidence in the literature in each of the histologic types to help provide a guide to the integration of cyclosporin into the management of INS for the practicing nephrologist

    Kidney disease in nail–patella syndrome

    Get PDF
    Nail–patella syndrome (NPS) is a pleiotropic autosomal-dominant disorder due to mutations in the gene LMX1B. It has traditionally been characterized by a tetrad of dermatologic and musculoskeletal abnormalities. However, one of the most serious manifestations of NPS is kidney disease, which may be present in up to 40% of affected individuals. Although LMX1B is a developmental LIM-homeodomain transcription factor, it is expressed in post-natal life in the glomerular podocyte, suggesting a regulatory role in that cell. Kidney disease in NPS seems to occur more often in some families with NPS, but it does not segregate with any particular mutation type or location. Two patterns of NPS nephropathy may be distinguished. Most affected individuals manifest only an accelerated age-related loss of filtration function in comparison with unaffected individuals. Development of symptomatic kidney failure is rare in this group, and proteinuria (present in approximately one-third) does not appear to be progressive. A small minority (5–10%) of individuals with NPS develop nephrotic-range proteinuria as early as childhood or young adulthood and progress to end-stage kidney failure over variable periods of time. It is proposed that this latter group reflects the effects of more global podocyte dysfunction, possibly due to the combination of a mutation in LMX1B along with an otherwise innocuous polymorphism or mutation involving any of several genes expressed in podocytes (e.g. NPHS2, CD2AP), the transription of which is regulated by LMX1B

    Intraplaque haemorrhages as the trigger of plaque vulnerability

    Get PDF
    Atherothrombosis remains one of the main causes of morbidity and mortality in the western countries. Human atherothrombotic disease begins early in life in relation to circulating lipid retention in the inner vascular wall. Risk factors enhance the progression towards clinical expression: dyslipidaemia, diabetes, smoking, hypertension, ageing, etc. The evolution from the initial lipid retention in the arterial wall to clinical events is a continuum of increasingly complex biological processes. Current strategies to fight the consequences of atherothrombosis are orientated either towards the promotion of a healthy life style1 and preventive treatment of risk factors, or towards late interventional strategies.2 Despite this therapeutic arsenal, the incidence of clinical events remains dramatically high,3 dependent, at least in part, on the increasing frequency of type 2 diabetes and ageing. But some medical treatments, focusing only on prevention of the metabolic risk, have failed to reduce cardiovascular mortality, thus illustrating that our understanding of the pathophysiology of human atherothrombosis leading to clinical events remain incomplete. New paradigms are now emerging which may give rise to novel experimental strategies to improve therapeutic efficacy and prediction of disease progression. Recent studies strengthen the concept that the intraplaque neovascularization and bleeding (Figure 1, upper panel) are events that could play a major role in plaque progression and leucocyte infiltration, and may also serve as a measure of risk for the development of future events. The recent advances in our understanding of IntraPlaque Hemorrhage as a critical event in triggering acute clinical events have important implications for clinical research and possibly future clinical practice. Figure 1Macroscopic view and schematic representation of the detrimental consequences of intraplaque haemorrhages on plaque biology and stability

    Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis—a review

    Get PDF
    This review deals with podocyte proteins that play a significant role in the structure and function of the glomerular filter. Genetic linkage studies has identified several genes involved in the development of nephrotic syndrome and contributed to the understanding of the pathophysiology of glomerular proteinuria and/or focal segmental glomerulosclerosis. Here, we describe already well-characterized genetic diseases due to mutations in nephrin, podocin, CD2AP, alpha-actinin-4, WT1, and laminin β2 chain, as well as more recently identified genetic abnormalities in TRPC6, phospholipase C epsilon, and the proteins encoded by the mitochondrial genome. In addition, the role of the proteins which have shown to be important for the structure and functions by gene knockout studies in mice, are also discussed. Furthermore, some rare syndromes with glomerular involvement, in which molecular defects have been recently identified, are briefly described. In summary, this review updates the current knowledge of genetic causes of congenital and childhood nephrotic syndrome and provides new insights into mechanisms of glomerular dysfunction

    Treatment of focal segmental glomerulosclerosis

    No full text
    corecore