8,635 research outputs found

    Statistical theory of relaxation of high energy electrons in quantum Hall edge states

    Full text link
    We investigate theoretically the energy exchange between electrons of two co-propagating, out-of-equilibrium edge states with opposite spin polarization in the integer quantum Hall regime. A quantum dot tunnel-coupled to one of the edge states locally injects electrons at high energy. Thereby a narrow peak in the energy distribution is created at high energy above the Fermi level. A second downstream quantum dot performs an energy resolved measurement of the electronic distribution function. By varying the distance between the two dots, we are able to follow every step of the energy exchange and relaxation between the edge states - even analytically under certain conditions. In the absence of translational invariance along the edge, e.g. due to the presence of disorder, energy can be exchanged by non-momentum conserving two-particle collisions. For weakly broken translational invariance, we show that the relaxation is described by coupled Fokker-Planck equations. From these we find that relaxation of the injected electrons can be understood statistically as a generalized drift-diffusion process in energy space for which we determine the drift-velocity and the dynamical diffusion parameter. Finally, we provide a physically appealing picture in terms of individual edge state heating as a result of the relaxation of the injected electrons.Comment: 13 pages plus 6 appendices, 8 figures. Supplemental Material can be found on http://quantumtheory.physik.unibas.ch/people/nigg/supp_mat.htm

    Interaction induced edge channel equilibration

    Full text link
    The electronic distribution functions of two Coulomb coupled chiral edge states forming a quasi-1D system with broken translation invariance are found using the equation of motion approach. We find that relaxation and thereby energy exchange between the two edge states is determined by the shot noise of the edge states generated at a quantum point contact (QPC). In close vicinity to the QPC, we derive analytic expressions for the distribution functions. We further give an iterative procedure with which we can compute numerically the distribution functions arbitrarily far away from the QPC. Our results are compared with recent experiments of Le Sueur et al..Comment: 10 pages, 7 figures, includes 5 pages of supplementary informatio

    Preliminary results of geothermal desalting operations at the East Mesa test site Imperial Valley, California

    Get PDF
    The Bureau of Reclamation has erected at its Geothermal Resource Development site two experimental test vehicles for the purpose of desalting hot fluids of geothermal origin. Both plants have as a feed source geothermal well Mesa 6-1 drilled to a total depth of 8,030 feet and having a bottom hole temperature of 400 F. Formation fluid collected at the surface contained 24,800 mg/1 total dissolved solids. The dissolved solids consist mainly of sodium chloride. A multistage distillation (3-stage) plant has been operated intermittently for one year with no operational problems. Functioning at steady-state conditions with a liquid feed rate of 70 g/m and a temperature of 221 F, the final brine blowdown temperature was 169 F. Product water was produced at a rate of about 2 g/m; average total dissolved solids content of the product was 170 mg/1. A product quality of 27.5 mg/1 at a pH of 9.5 was produced from the first stage

    STABILIZATION OF UPLAND RICE PRODUCTION UNDER SHORTENED FALLOW IN WEST AFRICA: RESEARCH PRIORITY SETTING IN A DYNAMIC ENVIRONMENTAL AND ECONOMIC CLIMATE

    Get PDF
    This paper presents a dynamic model of land resource degradation and shifting rice cultivation in West Africa based upon Boserup and Dvorak. The model indicates the ex ante impact of research strategies to maximize the economic benefits of host plant resistance and land resource management and thereby stabilize yield decline and reduce land degradation.Land Economics/Use, Resource /Energy Economics and Policy,

    Lithium atom storage in nanoporous cellulose via surface induced Li2\rm Li_2 breakage

    Full text link
    We demonstrate a physical mechanism that enhances a splitting of diatomic Li2\rm Li_2 at cellulose surfaces. The origin of this splitting is a possible surface induced diatomic excited state resonance repulsion. The atomic Li is then free to form either physical or chemical bonds with the cellulose surface and even diffuse into the cellulose layer structure. This allows for an enhanced storage capacity of atomic Li in nanoporous celluloseComment: 5 pages, 6 figure

    Foreword 9(1)

    Get PDF

    Non-Perturbative Theory for Dispersion Self-Energy of Atoms

    Full text link
    We go beyond the approximate series-expansions used in the dispersion theory of finite size atoms. We demonstrate that a correct, and non-perturbative, theory dramatically alters the dispersion selfenergies of atoms. The non-perturbed theory gives as much as 100% corrections compared to the traditional series expanded theory for the smaller noble gas atoms.Comment: 3 pages, no figures, 1 tabl

    Pressure buildup during CO2 injection in brine aquifers using the Forchheimer equation

    Get PDF
    If geo-sequestration of CO2 is to be employed as a key emissions reduction method in the global effort to mitigate climate change, simple yet robust screening of the risks of disposal in brine aquifers will be needed. There has been significant development of simple analytical and semi-analytical techniques to support screening analysis and performance assessment for potential carbon sequestration sites. These techniques have generally been used to estimate the size of CO2 plumes for the purpose of leakage rate estimation. A common assumption has been that both the fluids and the geological formation are incompressible. Consequently, calculation of pressure distribution requires the specification of an arbitrary radius of influence. In this talk, a new similarity solution is derived using the method of matched asymptotic expansions. By allowing for slight compressibility in the fluids and formation, the solution improves on previous work by not requiring the specification of an arbitrary radius of influence. A large-time approximation of the solution is then extended to account for non-Darcy inertial effects using the Forchheimer equation. Both solutions are verified by comparison with finite difference solutions. The results show that inertial losses will often be comparable, and sometimes greater than, the viscous Darcy-like losses associated with the brine displacement, although this is strongly dependent on formation porosity and permeability
    • …
    corecore