13 research outputs found

    Methamphetamine withdrawal induces activation of CRF neurons in the brain stress system in parallel with an increased activity of cardiac sympathetic pathways.

    Get PDF
    Methamphetamine (METH) addiction is a major public health problem in some countries. There is evidence to suggest that METH use is associated with increased risk of developing cardiovascular problems. Here, we investigated the effects of chronic METH administration and withdrawal on the activation of the brain stress system and cardiac sympathetic pathways. Mice were treated with METH (2 mg/kg, i.p.) for 10 days and left to spontaneous withdraw for 7 days. The number of corticotrophin-releasing factor (CRF), c-Fos, and CRF/c-Fos neurons was measured by immunohistochemistry in the paraventricular nucleus of the hypothalamus (PVN) and the oval region of the bed nucleus of stria terminalis (ovBNST), two regions associated with cardiac sympathetic control. In parallel, levels of catechol-o-methyl-transferase (COMT), tyrosine hydroxylase (TH), and heat shock protein 27 (Hsp27) were measured in the heart. In the brain, chronic-METH treatment enhanced the number of c-Fos neurons and the CRF neurons with c-Fos signal (CRF+/c-Fos+) in PVN and ovBNST. METH withdrawal increased the number of CRF+neurons. In the heart, METH administration induced an increase in soluble (S)-COMT and membrane-bound (MB)-COMT without changes in phospho (p)-TH, Hsp27, or pHsp27. Similarly, METH withdrawal increased the expression of S- and MB-COMT. In contrast to chronic treatment, METH withdrawal enhanced levels of (p)TH and (p)Hsp27 in the heart. Overall, our results demonstrate that chronic METH administration and withdrawal activate the brain CRF systems associated with the heart sympathetic control and point towards a METH withdrawal induced activation of sympathetic pathways in the heart. Our findings provide further insight in the mechanism underlining the cardiovascular risk associated with METH use and proposes targets for its treatment

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Maternal Separation Impairs Cocaine-Induced Behavioural Sensitization in Adolescent Mice

    No full text
    Adverse early-life conditions induce persistent disturbances that give rise to negative emotional states. Therefore, early life stress confers increased vulnerability to substance use disorders, mainly during adolescence as the brain is still developing. In this study, we investigated the consequences of maternal separation, a model of maternal neglect, on the psychotropic effects of cocaine and the neuroplasticity of the dopaminergic system. Our results show that mice exposed to maternal separation displayed attenuated behavioural sensitization, while no changes were found in the rewarding effects of cocaine in the conditioned place preference paradigm and in the reinforcing effects of cocaine in the self-administration paradigm. The evaluation of neuroplasticity in the striatal dopaminergic pathways revealed that mice exposed to maternal separation exhibited decreased protein expression levels of D2 receptors and increased levels of the transcriptional factor Nurr1. Furthermore, animals exposed to maternal separation and treated with cocaine exhibited increased DA turnover and protein expression levels of DAT and D2R, while decreased Nurr1 and Pitx3 protein expression levels were observed when compared with saline-treated mice. Taken together, our data demonstrate that maternal separation caused an impairment of cocaine-induced behavioural sensitization possibly due to a dysfunction of the dopaminergic system, a dysfunction that has been proposed as a factor of vulnerability for developing substance use disorders.This study was supported by UE MedBioinformatics project (Grant Agreement Number: 634143), MINECO (SAF2013-41761-R-FEDER and SAF2013-49076-P-FEDER), Spanish Ministry of Health (Retic-ISCIII-RD/12/0028/0024-FEDER and RETICS-ISCIII-RD 12/0028/003-FEDER and Plan Nacional sobre Drogas 2014/020), Generalitat de Catalunya (2014SGR34) and Fundación Séneca (15405/PI/10), Región de Murcia. IG-R was funded by FPI fellowship BES-2011-046655 associated to SAF2010-15793

    Seven Millennia of Saltmaking. III Congreso Internacional de Antropologia de la Sal

    No full text
    International audienc
    corecore