2,046 research outputs found

    Two photon annihilation of Kaluza-Klein dark matter

    Full text link
    We investigate the fermionic one-loop cross section for the two photon annihilation of Kaluza-Klein (KK) dark matter particles in a model of universal extra dimensions (UED). This process gives a nearly mono-energetic gamma-ray line with energy equal to the KK dark matter particle mass. We find that the cross section is large enough that if a continuum signature is detected, the energy distribution of gamma-rays should end at the particle mass with a peak that is visible for an energy resolution of the detector at the percent level. This would give an unmistakable signature of a dark matter origin of the gamma-rays, and a unique determination of the dark matter particle mass, which in the case studied should be around 800 GeV. Unlike the situation for supersymmetric models where the two-gamma peak may or may not be visible depending on parameters, this feature seems to be quite robust in UED models, and should be similar in other models where annihilation into fermions is not helicity suppressed. The observability of the signal still depends on largely unknown astrophysical parameters related to the structure of the dark matter halo. If the dark matter near the galactic center is adiabatically contracted by the central star cluster, or if the dark matter halo has substructure surviving tidal effects, prospects for detection look promising.Comment: 17 pages, 3 figures; slightly revised versio

    Non-Baryonic Dark Matter - Observational Evidence and Detection Methods

    Get PDF
    The evidence for the existence of dark matter in the universe is reviewed. A general picture emerges, where both baryonic and non-baryonic dark matter is needed to explain current observations. In particular, a wealth of observational information points to the existence of a non-baryonic component, contributing between around 20 and 40 percent of the critical mass density needed to make the universe geometrically flat on large scales. In addition, an even larger contribution from vacuum energy (or cosmological constant) is indicated by recent observations. To the theoretically favoured particle candidates for non-baryonic dark matter belong axions, supersymmetric particles, and of less importance, massive neutrinos. The theoretical foundation and experimental situation for each of these is reviewed. Direct and indirect methods for detection of supersymmetric dark matter are described in some detail. Present experiments are just reaching the required sensitivity to discover or rule out some of these candidates, and major improvements are planned over the coming years.Comment: Submitted to Reports on Progress in Physics, 59 pages, LaTeX, iopart macro, 14 embedded postscript figure

    A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope

    Full text link
    The observation of a gamma-ray line in the cosmic-ray fluxes would be a smoking-gun signature for dark matter annihilation or decay in the Universe. We present an improved search for such signatures in the data of the Fermi Large Area Telescope (LAT), concentrating on energies between 20 and 300 GeV. Besides updating to 43 months of data, we use a new data-driven technique to select optimized target regions depending on the profile of the Galactic dark matter halo. In regions close to the Galactic center, we find a 4.6 sigma indication for a gamma-ray line at 130 GeV. When taking into account the look-elsewhere effect the significance of the observed excess is 3.2 sigma. If interpreted in terms of dark matter particles annihilating into a photon pair, the observations imply a dark matter mass of 129.8\pm2.4^{+7}_{-13} GeV and a partial annihilation cross-section of = 1.27\pm0.32^{+0.18}_{-0.28} x 10^-27 cm^3 s^-1 when using the Einasto dark matter profile. The evidence for the signal is based on about 50 photons; it will take a few years of additional data to clarify its existence.Comment: 23 pages, 9 figures, 3 tables; extended discussion; matches published versio

    Gluon fragmentation to ^3D_J quarkonia

    Get PDF
    We present a calculation of the leading order QCD fragmentation functions for gluons to split into spin-triplet D-wave quarkonia. We apply them to evaluate the gluon fragmentation contributions to inclusive ^3D_J quarkonium production at large transverse momentum processes like the Tevatron and find that the D-wave quarkonia, especially the charmonium 2^{--} state, could be observed through color-octet mechanism with present luminosity. Since there are distinctively large gaps between the contributions of two different (i.e, color-singlet and color-octet) quarkonium production mechanisms, our results may stand as a unique test to NRQCD color-octet quarkonium production mechanism.Comment: 15 pages in LaTex (2 figures in PS-file

    J/Psi Production from Electromagnetic Fragmentation in Z decay

    Full text link
    The rate for Z0J/ψ++ Z^{0}\to J/ \psi + \ell^{+}\ell^{-} is suprisingly large with about one event for every million Z0Z^{0} decays. The reason for this is that there is a fragmentation contribution that is not suppressed by a factor of Mψ2/MZ2M^{2}_{\psi}/M^{2}_{Z}. In the fragmentation limit MZ M_{Z}\to\infty with Eψ/MZE_{\psi}/M_{Z} fixed, the differential decay rate for Z0J/ψ++ Z^{0}\to J/ \psi + \ell^{+}\ell^{-} factors into electromagnetic decay rates and universal fragmentation functions. The fragmentation functions for lepton fragmentation and photon fragmentation into J/ψJ/\psi are calculated to lowest order in α\alpha. The fragmentation approximation to the rate is shown to match the full calculation for EψE_{\psi} greater than about 3Mψ3 M_{\psi}.Comment: 16 pages and 8 figure

    The cosmic ray positron excess and neutralino dark matter

    Get PDF
    Using a new instrument, the HEAT collaboration has confirmed the excess of cosmic ray positrons that they first detected in 1994. We explore the possibility that this excess is due to the annihilation of neutralino dark matter in the galactic halo. We confirm that neutralino annihilation can produce enough positrons to make up the measured excess only if there is an additional enhancement to the signal. We quantify the `boost factor' that is required in the signal for various models in the Minimal Supersymmetric Standard Model parameter space, and study the dependence on various parameters. We find models with a boost factor greater than 30. Such an enhancement in the signal could arise if we live in a clumpy halo. We discuss what part of supersymmetric parameter space is favored (in that it gives the largest positron signal), and the consequences for other direct and indirect searches of supersymmetric dark matter.Comment: 11 pages, 6 figures, matches published version (PRD

    Suppressing Unwanted Memories Reduces Their Unintended Influences

    Get PDF
    The ability to control unwanted memories is critical for maintaining cognitive function and mental health. Prior research has shown that suppressing the retrieval of unwanted memories impairs their retention, as measured on intentional (direct) memory tests. Here we review emerging evidence revealing that retrieval suppression can also reduce the unintended influence of suppressed traces. In particular, retrieval suppression (1) gradually diminishes the tendency for memories to intrude into awareness, and (2) reduces memories’ unintended expressions on indirect memory tests. We present a neural account in which, during suppression, retrieval cues elicit hippocampally-triggered neocortical activity that briefly reinstates features of the original event, which, in turn, are suppressed by targeted neocortical and hippocampal inhibition. This reactivation-dependent reinstatement principle could provide a broad mechanism by which suppressing retrieval of intrusive memories limits their indirect influences

    Particle Dark Matter Physics: An Update

    Get PDF
    This write--up gives a rather elementary introduction into particle physics aspects of the cosmological Dark Matter puzzle. A fairly comprehensive list of possible candidates is given; in each case the production mechanism and possible ways to detect them (if any) are described. I then describe detection of the in my view most promising candidates, weakly interacting massive particles or WIMPs, in slightly more detail. The main emphasis will be on recent developments.Comment: Invited talk at the 5th Workshop on Particle Physics Phenomenology, Pune, India, January 1998; 21 pages, LaTeX with equation.st

    The Role of Antimatter Searches in the Hunt for Supersymmetric Dark Matter

    Full text link
    We analyze the antimatter yield of supersymmetric (SUSY) models with large neutralino annihilation cross sections. We introduce three benchmark scenarios, respectively featuring bino, wino and higgsino-like lightest neutralinos, and we study in detail the resulting antimatter spectral features. We carry out a systematic and transparent comparison between current and future prospects for direct detection, neutrino telescopes and antimatter searches. We demonstrate that often, in the models we consider, antimatter searches are the only detection channel which already constrains the SUSY parameter space. Particularly large antiprotons fluxes are expected for wino-like lightest neutralinos, while significant antideuteron fluxes result from resonantly annihilating binos. We introduce a simple and general recipe which allows to assess the visibility of a given SUSY model at future antimatter search facilities. We provide evidence that upcoming space-based experiments, like PAMELA or AMS, are going to be, in many cases, the unique open road towards dark matter discovery.Comment: 34 pages, 18 figures; V2: misprints in the labels of fig. 2,3 and 5 correcte
    corecore