682 research outputs found

    Hadron masses in QCD with one quark flavour

    Full text link
    One-flavour QCD - a gauge theory with SU(3) colour gauge group and a fermion in the fundamental representation - is studied by Monte Carlo simulations. The mass spectrum of hadronic bound states is investigated in a volume with extensions of L ~ 4.4r_0 (~2.2fm) at two different lattice spacings: a ~ 0.37r_0 (~0.19fm) and a ~ 0.27r_0 (~0.13fm). The lattice action is Symanzik tree-level-improved Wilson action for the gauge field and (unimproved) Wilson action for the fermion.Comment: 21 pages, 4 figures; further references adde

    Hot electroweak matter near to the endpoint of the phase transition

    Get PDF
    The electroweak phase transition is investigated near to its endpoint in the framework of an effective three-dimensional model. We measure the very weak interface tension with the tunneling correlation length method. First results for the mass spectrum and the corresponding wave functions in the symmetric phase are presented.Comment: 3 pages, 5 figures, uses espcrc2.sty, contribution to LATTICE9

    Perturbation theory for the two-dimensional abelian Higgs model in the unitary gauge

    Full text link
    In the unitary gauge the unphysical degrees of freedom of spontaneously broken gauge theories are eliminated. The Feynman rules are simpler than in other gauges, but it is non-renormalizable by the rules of power counting. On the other hand, it is formally equal to the limit ξ0\xi \to 0 of the renormalizable Rξ_{\xi}-gauge. We consider perturbation theory to one-loop order in the Rξ_{\xi}-gauge and in the unitary gauge for the case of the two-dimensional abelian Higgs model. An apparent conflict between the unitary gauge and the limit ξ0\xi \to 0 of the Rξ_{\xi}-gauge is resolved, and it is demonstrated that results for physical quantities can be obtained in the unitary gauge.Comment: 15 pages, LaTeX2e, uses the feynmf package, formulations correcte

    EnergyPlan: computer model for energy system analysis:version 6

    Get PDF

    Chiral perturbation theory for partially quenched twisted mass lattice QCD

    Full text link
    Partially quenched Quantum Chromodynamics with Wilson fermions on a lattice is considered in the framework of chiral perturbation theory. Two degenerate quark flavours are associated with a chirally twisted mass term. The pion masses and decay constants are calculated in next-to-leading order including terms linear in the lattice spacing aa.Comment: 7 pages, LaTeX2e, final published versio

    The microcanonical thermodynamics of finite systems: The microscopic origin of condensation and phase separations; and the conditions for heat flow from lower to higher temperatures

    Full text link
    Microcanonical thermodynamics allows the application of statistical mechanics both to finite and even small systems and also to the largest, self-gravitating ones. However, one must reconsider the fundamental principles of statistical mechanics especially its key quantity, entropy. Whereas in conventional thermostatistics, the homogeneity and extensivity of the system and the concavity of its entropy are central conditions, these fail for the systems considered here. For example, at phase separation, the entropy, S(E), is necessarily convex to make exp[S(E)-E/T] bimodal in E. Particularly, as inhomogeneities and surface effects cannot be scaled away, one must be careful with the standard arguments of splitting a system into two subsystems, or bringing two systems into thermal contact with energy or particle exchange. Not only the volume part of the entropy must be considered. As will be shown here, when removing constraints in regions of a negative heat capacity, the system may even relax under a flow of heat (energy) against a temperature slope. Thus the Clausius formulation of the second law: ``Heat always flows from hot to cold'', can be violated. Temperature is not a necessary or fundamental control parameter of thermostatistics. However, the second law is still satisfied and the total Boltzmann entropy increases. In the final sections of this paper, the general microscopic mechanism leading to condensation and to the convexity of the microcanonical entropy at phase separation is sketched. Also the microscopic conditions for the existence (or non-existence) of a critical end-point of the phase-separation are discussed. This is explained for the liquid-gas and the solid-liquid transition.Comment: 23 pages, 2 figures, Accepted for publication in the Journal of Chemical Physic

    New approach for a comprehensive method for urban vehicle concepts with electric powertrain and their necessary vehicle structures

    Get PDF
    By the strict discussions regarding energy saving and the goal to reduce CO2 emissions to 95g CO2/km, which is specified for the year 2020, [1] there is a keen demand for lighter and lightweight designed automotive structures to support the energy saving targets. In view of a holistic approach and also to prospectively meet the requirements of the automotive sector, beside the previously mentioned challenges, economic and production-orientated aspects, as well as joining technologies, within the scope of multi-material design, have to be considered to realize a great leap forward medium to large-scale productions. To achieve these goals, a comprehensive method for urban vehicle concepts with electric powertrain and their necessary vehicle structures is presented. The dimensions and packaging of the presented vehicle is based on demands of a future urban vehicle with space for four occupants including baggage, steerable front system wheels and a rear axle including an electric powertrain. At the beginning of the method the relevant user requirements, e.g. space for persons and baggage, range for the urban vehicle are defined. In addition, input variables are discharged through the state of the art of electric vehicles. It is also an important point in this step to look on further requirements such as crash requirements or requirements for electrical components in the vehicle design. With the defined requirements the package of the urban car has to be defined. Two paths are determined to a geometrically and a simulative way. The simulative consideration is limited to the vehicle longitudinal dynamics, thus a rough dimensioning of the drive components is derived. The outputs of the simulation are the performance measures which are then converted into components for the overall model for dimensioning for example electric motor or battery. The geometric design phase begins with the positioning of the occupants in the passenger compartment and ergonomic layout. Based on this conception of the complete vehicle, various FEM optimizations (topology, topography, size) are carried out for the body in white in order to construct structures towards individual (functional) components/modules. This top-down approach raises the opportunity to extract constructive innovations, which must be integrated within this early concept phase, also to reduce costs when aiming to development of a series product. With this holistic approach a load-specific optimized structural design is virtually generated and evaluated, and also an outlook on dynamic loads (crash behavior) is given. The focus here is on the potential in innovations by the definition of novel package alignments in combination with the useful application of multi-material-design method, resulting in a light modular vehicle structure

    Correlations around an interface

    Full text link
    We compute one-loop correlation functions for the fluctuations of an interface using a field theory model. We obtain them from Feynman diagrams drawn with a propagator which is the inverse of the Hamiltonian of a Poschl-Teller problem. We derive an expression for the propagator in terms of elementary functions, show that it corresponds to the usual spectral sum, and use it to calculate quantities such as the surface tension and interface profile in two and three spatial dimensions. The three-dimensional quantities are rederived in a simple, unified manner, whereas those in two dimensions extend the existing literature, and are applicable to thin films. In addition, we compute the one-loop self-energy, which may be extracted from experiment, or from Monte Carlo simulations. Our results may be applied in various scenarios, which include fluctuations around topological defects in cosmology, supersymmetric domain walls, Z(N) bubbles in QCD, domain walls in magnetic systems, interfaces separating Bose-Einstein condensates, and interfaces in binary liquid mixtures.Comment: RevTeX, 13 pages, 6 figure

    Ultra-high–strength Bainitic Steels

    Get PDF
    Novel bainitic microstructures, consisting of slender ferrite plates (tens of nm) in a matrix of retained austenite, have reported maximum yield strength of 1.4 GPa, ultimate tensile strength of 2.2 GPa, 30% ductility and respectable levels of fracture toughness (∼51 MPa m0.5). The unusual combination of properties is attributed to the fine bainitic plates and the presence of retained austenite in the microstructure.The authors acknowledge financial support from the Spanish Ministerio de Educación y Ciencia for the financial support in the form of Ramón y Cajal contracts (RyC 2002 and 2004 respectively). Some of this work was carried out under the auspices of an EPSRC/MOD sponsored project on bainitic steels at the University of Cambridge; we are extremely grateful for this support over a period of three years. The authors are extremely grateful to Prof. H. K. D.Peer reviewe

    Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation

    Full text link
    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated NN-particle system, the microcanonical TDFs exhibit (N-1) singular (non-analytic) microscopic phase transitions of the formal order N/2, separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text, references adde
    corecore