911 research outputs found

    Simulated Audits to Engage Students in IT Governance and Assurance Courses

    Get PDF
    IT governance - and its related assurance activities - is important knowledge for information systems students to obtain. This teaching tip describes a six-week simulation involving IT assurance professionals from a major certified public accounting firm (and alumni of Miami University) who lead students in an IT risk and assurance class through a mock IT audit. The lessons we learned as we completed the first semester using this case are discussed. One significant lesson we learned is that students will have varying levels of interest in IT audits and will need to be coached through the significance of the case even if they are not planning to pursue a career in audit

    Effect of silver content on the structure and antibacterial activity of silver-doped phosphate-based glasses

    Get PDF
    Staphylococcus aureus can cause a range of diseases, such as osteomyelitis, as well as colonize implanted medical devices. In most instances the organism forms biofilms that not only are resistant to the body's defense mechanisms but also display decreased susceptibilities to antibiotics. In the present study, we have examined the effect of increasing silver contents in phosphate-based glasses to prevent the formation of S. aureus biofilms. Silver was found to be an effective bactericidal agent against S. aureus biofilms, and the rate of silver ion release (0.42 to 1.22 µg·mm–2·h–1) from phosphate-based glass was found to account for the variation in its bactericidal effect. Analysis of biofilms by confocal microscopy indicated that they consisted of an upper layer of viable bacteria together with a layer (20 µm) of nonviable cells on the glass surface. Our results showed that regardless of the silver contents in these glasses (10, 15, or 20 mol%) the silver exists in its +1 oxidation state, which is known to be a highly effective bactericidal agent compared to that of silver in other oxidation states (+2 or +3). Analysis of the glasses by 31P nuclear magnetic resonance imaging and high-energy X-ray diffraction showed that it is the structural rearrangement of the phosphate network that is responsible for the variation in silver ion release and the associated bactericidal effectiveness. Thus, an understanding of the glass structure is important in interpreting the in vitro data and also has important clinical implications for the potential use of the phosphate-based glasses in orthopedic applications to deliver silver ions to combat S. aureus biofilm infections

    Interactions of heavy nuclei, Kr, Xe and Ho, in light targets

    Get PDF
    Over the past few years, the HEAO-3 measurements of the abundances of ultra-heavy cosmic ray nuclei (Z 26) at earth have been analyzed. In order to interpret these abundances in terms of a source composition, allowance must be made for the propagation of the nuclei in the interstellar medium. Vital to any calculation of the propagation is a knowlege of the total and partial interaction cross sections for these heavy nuclei on hydrogen. Until recently, data on such reactions have been scarce. However, now that relativistic heavy ion beams are available at the LBL Bevalac, some of the cross sections of interest can be measured at energies close to those of the cosmic ray nuclei being observed. During a recent calibration at the Bevalac of an array similar to the HEAO-C3 UH-nuclei detector, targets of raphite (C), polyethylene (CH2), and aluminum were exposed to five heavy ion beams ranging in charge (Z) from 36 to 92. Total and partial charge changing cross sections for the various beam nuclei on hydrogen can be determined from the measured cross sections on C and CH2, and will be applied to the propagation problem. The cross sections on Al can be used to correct the abundances of UH cosmic rays observed in the HEAO C-3 detector for interactions in the detector itself

    The Cosmic-Ray Abundances of the Platinum-Lead Elements as Measured on HEAO-3

    Get PDF
    The relative abundances of elements in the charge ranges of 75 ≤ Z ≤ 79 (platinum) and 80 ≤ Z ≤ 83 (lead) should be a sensitive indication of the contributions of the r- and s-processes in nucleosynthesis. Data from the HEAO 3 Heavy Nuclei Experiment are used to establish abundances, relative to iron, of these elements in the cosmic radiation, as well as the ratio of 'secondary' elements, in the 62 ≤ Z ≤ 74 range, to the primary lead-platinum elements. These results appear to suggest that either the source abundances are deficient in s-process elements or that they are not organized solely by first ionization potential. In addition, present propagation models can adequately represent the relative abundances of primary and secondary elements

    Constraints on Gamma-ray Emission from the Galactic Plane at 300 TeV

    Get PDF
    We describe a new search for diffuse ultrahigh energy gamma-ray emission associated with molecular clouds in the galactic disk. The Chicago Air Shower Array (CASA), operating in coincidence with the Michigan muon array (MIA), has recorded over 2.2 x 10^{9} air showers from April 4, 1990 to October 7, 1995. We search for gamma rays based upon the muon content of air showers arriving from the direction of the galactic plane. We find no significant evidence for diffuse gamma-ray emission, and we set an upper limit on the ratio of gamma rays to normal hadronic cosmic rays at less than 2.4 x 10^{-5} at 310 TeV (90% confidence limit) from the galactic plane region: (50 degrees < l < 200 degrees); -5 degrees < b < 5 degrees). This limit places a strong constraint on models for emission from molecular clouds in the galaxy. We rule out significant spectral hardening in the outer galaxy, and conclude that emission from the plane at these energies is likely to be dominated by the decay of neutral pions resulting from cosmic rays interactions with passive target gas molecules.Comment: Astrophysical Journal, submitted, 11 pages, AASTeX Latex, 3 Postscript figure

    Pulsed Feedback Defers Cellular Differentiation

    Get PDF
    Environmental signals induce diverse cellular differentiation programs. In certain systems, cells defer differentiation for extended time periods after the signal appears, proliferating through multiple rounds of cell division before committing to a new fate. How can cells set a deferral time much longer than the cell cycle? Here we study Bacillus subtilis cells that respond to sudden nutrient limitation with multiple rounds of growth and division before differentiating into spores. A well-characterized genetic circuit controls the concentration and phosphorylation of the master regulator Spo0A, which rises to a critical concentration to initiate sporulation. However, it remains unclear how this circuit enables cells to defer sporulation for multiple cell cycles. Using quantitative time-lapse fluorescence microscopy of Spo0A dynamics in individual cells, we observed pulses of Spo0A phosphorylation at a characteristic cell cycle phase. Pulse amplitudes grew systematically and cell-autonomously over multiple cell cycles leading up to sporulation. This pulse growth required a key positive feedback loop involving the sporulation kinases, without which the deferral of sporulation became ultrasensitive to kinase expression. Thus, deferral is controlled by a pulsed positive feedback loop in which kinase expression is activated by pulses of Spo0A phosphorylation. This pulsed positive feedback architecture provides a more robust mechanism for setting deferral times than constitutive kinase expression. Finally, using mathematical modeling, we show how pulsing and time delays together enable “polyphasic” positive feedback, in which different parts of a feedback loop are active at different times. Polyphasic feedback can enable more accurate tuning of long deferral times. Together, these results suggest that Bacillus subtilis uses a pulsed positive feedback loop to implement a “timer” that operates over timescales much longer than a cell cycle

    The Response of Ionization Chambers to Relativistic Heavy Nuclei

    Get PDF
    As part of a recent calibration at the LBL Bevalac for the Heavy Nuclei Experiment on HEAO-3, we have compared the response of a set of laboratory ionization chambers to beams of _(26)Fe, _(36)Kr, _(54)Xe, _(67)Ho, and _(79)Au nuclei at maximum energies ranging from 1666 MeV/amu for Fe to 1049 MeV /amu for Au. The response of these chambers shows a significant deviation from the expected energy dependence, but only a slight deviation from Z^2 scaling

    The Non-Z^2 Response of the Heavy Nuclei Cosmic Ray Detector on HEAO-3

    Get PDF
    A combination of ion chambers and Cerenkov radiators similar to the Heavy Nuclei Experiment flown on HEAO-3 was calibrated at the Bevalac heavy-ion accelerator using beams of Mn-25 nuclei at kinetic energies up to about 1700 MeV/nucleon and Au-79 nuclei up to about 1000 MeV/nucleon. The data show only a small deviation (about 2-3 charge units at Au) from the Z^2 scaling used previously (Binns et al., 1981, 1982, 1983) to analyze the HNE data. Although at lower energy, the calibration indicates that the published relative abundances of the _(50)Sn/_(56)Ba group and the published upper-limit actinide abundances are not likely to be significantly affected by non-Z^2 effects
    corecore