103 research outputs found
One size does not fit all : profiling personalized time-evolving user behaviors
Given the set of social interactions of a user, how can we detect changes in interaction patterns over time? While most previous work has focused on studying network-wide properties and spotting outlier users, the dynamics of individual user interactions remain largely unexplored. This work sets out to explore those dynamics in a way that is minimally invasive to privacy, thus, avoids to rely on the textual content of user posts---except for validation. Our contributions are two-fold. First, in contrast to previous studies, we challenge the use of a fixed interval of observation. We introduce and empirically validate the "Temporal Asymmetry Hypothesis", which states that appropriate observation intervals should vary both among users and over time for the same user. We validate this hypothesis using eight different datasets, including email, messaging, and social networks data. Second, we propose iNET, a comprehensive analytic and visualization framework which provides personalized insights into user behavior and operates in a streaming fashion. iNET learns personalized baseline behaviors of users and uses them to identify events that signify changes in user behavior. We evaluate the effectiveness of iNET by analyzing more than half a million interactions from Facebook users. Labeling of the identified changes in user behavior showed that iNET is able to capture a wide spectrum of exogenous and endogenous events, while the baselines are less diverse in nature and capture only 66% of that spectrum. Furthermore, iNET exhibited the highest precision (95%) compared to all competing approaches
Complex information and accounting standards: Evidence from UK narrative reporting
The application of International Financial Reporting Standards (IFRS) has been introduced in many countries to enhance efficiencies in financial markets and improve communication in financial reporting. However, extant studies have suggested that the introduction of IFRS has increased narrative complexity, owing to the demand for more reporting. Considering that accounting complexity can be either informative (enhancing understanding) or non-informative, thereby causing obfuscation, this study performs an empirical analysis to highlight which of the two types of complexities may be affected by IFRS application. Using the setting of IFRS adoption in the UK and a word list-adjusted component of the fog index, this study decomposes complexity into two components: information (common complexity) and obfuscation (uncommon complexity). The results reveal that IFRS adoption has increased the common complexity of accounting narratives (information) but does not necessarily increase obfuscation. The study’s contribution is twofold: methodological through the decomposition of complexity using the term weighting concept and policy-related by identifying areas of increased narrative comparability in IFRS reports. Moreover, the study’s application of complexity decomposition to IFRS is novel. Future studies may apply this by using the identified information and obfuscation components to investigate the economic consequences of IFRS-associated complexity
SURREAL: Subgraph Robust Representation Learning
Abstract
The success of graph embeddings or nodrepresentation learning in a variety of downstream tasks, such as node classification, link prediction, and recommendation systems, has led to their popularity in recent years. Representation learning algorithms aim to preserve local and global network structure by identifying node neighborhoods. However, many existing network representation learning methods generate embeddings that are still not effective enough, or lead to unstable representations due to random processes (e.g., random walks to generate context) and thus, cannot generalize to multi-graph problems. In this paper, we propose SURREAL, a novel, stable graph embedding algorithmic framework that leverages “spatio-electric” (SE) subgraphs: it learns graph representations using the analogy of graphs with electrical circuits. It preserves both local and global connectivity patterns, and addresses the issue of high-degree nodes that may incidentally connect a pair of nodes in a graph. Further, it exploits the strength of weak ties and meta-data that have been neglected by baselines. The experiments show that SURREAL outperforms state-of-the-art techniques by up to 37% (6% on average) on different multi-label classification problems. Further, in contrast to baseline methods, SURREAL, being deterministic, is stable and thus can generalize to single and multi-graph tasks.https://deepblue.lib.umich.edu/bitstream/2027.42/152185/1/41109_2019_Article_160.pd
Internet use, eHealth literacy and attitudes toward computer/internet among people with schizophrenia spectrum disorders: a cross-sectional study in two distant European regions
Background: Individuals with schizophrenia spectrum disorders use the Internet for general and health-related purposes. Their ability to find, understand, and apply the health information they acquire online in order to make appropriate health decisions-known as eHealth literacy-has never been investigated. The European agenda strives to limit health inequalities and enhance mental health literacy. Nevertheless, each European member state varies in levels of Internet use and online health information-seeking. This study aimed to examine computer/Internet use for general and health-related purposes, eHealth literacy, and attitudes toward computer/Internet among adults with schizophrenia spectrum disorders from two distant European regions.Methods: Data were collected from mental health services of psychiatric clinics in Finland (FI) and Greece (GR). A total of 229 patients (FI = 128, GR = 101) participated in the questionnaire survey. The data analysis included evaluation of frequencies and group comparisons with multiple linear and logistic regression models.Results: The majority of Finnish participants were current Internet users (FI = 111, 87%, vs. GR = 33, 33%, P<.0001), while the majority of Greek participants had never used computers/Internet, mostly due to their perception that they do not need it. In both countries, more than half of Internet users used the Internet for health-related purposes (FI = 61, 55%, vs. GR = 20, 61%). The eHealth literacy of Internet users (previous and current Internet users) was found significantly higher in the Finnish group (FI: Mean = 27.05, SD 5.36; GR: Mean = 23.15, SD = 7.23, P<. 0001) upon comparison with their Greek counterparts. For current Internet users, Internet use patterns were significantly different between country groups. When adjusting for gender, age, education and disease duration, country was a significant predictor of frequency of Internet use, eHealth literacy and Interest. The Finnish group of Internet users scored higher in eHealth literacy, while the Greek group of never Internet users had a higher Interest in computer/Internet.Conclusions: eHealth literacy is either moderate (Finnish group) or low (Greek group). Thus, exposure to ICT and eHealth skills training are needed for this population. Recommendations to improve the eHealth literacy and access to health information among these individuals are provided
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype
Demographic predictors of wellbeing in Carers of people with psychosis: secondary analysis of trial data
Background: Carers of people with psychosis are at a greater risk of physical and mental health problems
compared to the general population. Yet, not all carers will experience a decline in health. This predicament has
provided the rationale for research studies exploring what factors predict poor wellbeing in carers of people with
psychosis. Our study builds on previous research by testing the predictive value of demographic variables on carer
wellbeing within a single regression model.
Methods: To achieve this aim, we conducted secondary analysis on two trial data sets that were merged and
recoded for the purposes of this study. Results: Contrary to our hypotheses, only carer gender and age predicted
carer wellbeing; with lower levels of carer wellbeing being associated with being female or younger (aged under
50). However, the final regression model explained only 11% of the total variance.
Conclusions: Suggestions for future research are discussed in light of the limitations inherent in secondary analysis
studies. Further research is needed where sample sizes are sufficient to explore the interactive and additive impact
of other predictor variables
Genetic prediction of ICU hospitalization and mortality in COVID-19 patients using artificial neural networks
There is an unmet need of models for early prediction of morbidity and mortality of Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related genetic variants associated with the clinical outcomes of ICU hospitalization and death, b) develop an artificial neural network (ANN) predicting these outcomes and c) validate whether complement-related variants are associated with an impaired complement phenotype. We prospectively recruited consecutive adult patients of Caucasian origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identified 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender and presence or absence of each variant, we developed an ANN predicting morbidity and mortality in 89.47% of the examined population. Furthermore, THBD and C3a levels were significantly increased in severe COVID-19 patients and those harbouring relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU hospitalization and death in COVID-19 patients, based on genetic variants in complement genes, age and gender. Importantly, we confirm that genetic dysregulation is associated with impaired complement phenotype.- Pfizer Pharmaceuticals(undefined
- …