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1  |  INTRODUC TION

Coronavirus disease-19 (COVID-19) caused by severe acute respi-
ratory syndrome coronavirus-2 (SARS-CoV-2) has led to unprece-
dented morbidity and mortality worldwide.1 Although vaccination 
against SARS-CoV-2  has positively impacted the course of this 
pandemic,2 the unmet need of reducing morbidity and mortality 
due to severe COVID-19, especially in special populations, remains. 
Accumulating evidence suggests that SARS-CoV-2 induces a vi-
cious cycle of immune dysfunction, endothelial injury, complement 
activation and microangiopathy. In particular, severe COVID-19 is 
a multisystemic vascular disease characterized by endothelial dys-
function.3,4 Therefore, an improved understanding of endothelial 
dysfunction and complement activation is of utmost importance.

In this context, several groups worldwide have shown evidence 
of complement activation in experimental and clinical studies of se-
vere COVID-19.5-13 Based on the paradigm of genetic susceptibility 
in complement-mediated disorders or complementopathies,14 our 
group and other researchers have suggested genetic susceptibility 
identifying complement genetic variants in COVID-19 patients.15-17 

In parallel, complement inhibitors have been safe and effective in 
severe COVID-19 during the first wave.18 Encouraging results have 
been reported in case series for terminal complement inhibition with 
eculizumab,19 C3 inhibition with the AMY-101,20 C1 inhibition with 
conestat alpha21 and lectin pathway inhibition with narsoplimab.22 
The comparison of AMY-101 to eculizumab suggested a broader 
involvement of C3 in thromboinflammation.23 Based on promising 
data, randomized controlled trials are ongoing for AMY-191 and ec-
ulizumab in severe COVID-19 (NCT04346797 and NCT04395456). 
Interim analysis is still pending on the paused phase 3  study 
of the long-acting terminal complement inhibitor ravulizumab. 
Nevertheless, several issues need to be considered for the wider use 
of complement inhibitors in COVID-19, including the complex set-
ting of inflammatory responses in COVID-19, the cost and the limita-
tion of drug accessibility. All require proper selection of patients that 
would potentially benefit from complement inhibition.

Taking into account the constantly evolving COVID-19  land-
scape due to vaccination and viral mutations, there is an unmet clin-
ical need of a prediction tool based on robust variables. Therefore, 
we aimed initially to identify critical complement-related genetic 
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Abstract
There is an unmet need of models for early prediction of morbidity and mortality of 
Coronavirus disease-19 (COVID-19). We aimed to a) identify complement-related ge-
netic variants associated with the clinical outcomes of ICU hospitalization and death, 
b) develop an artificial neural network (ANN) predicting these outcomes and c) vali-
date whether complement-related variants are associated with an impaired comple-
ment phenotype. We prospectively recruited consecutive adult patients of Caucasian 
origin, hospitalized due to COVID-19. Through targeted next-generation sequencing, 
we identified variants in complement factor H/CFH, CFB, CFH-related, CFD, CD55, C3, 
C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin and Metalloproteinase with 
Thrombospondin motifs (ADAMTS13). Among 381 variants in 133 patients, we identi-
fied 5 critical variants associated with severe COVID-19: rs2547438 (C3), rs2250656 
(C3), rs1042580 (THBD), rs800292 (CFH) and rs414628 (CFHR1). Using age, gender 
and presence or absence of each variant, we developed an ANN predicting morbidity 
and mortality in 89.47% of the examined population. Furthermore, THBD and C3a 
levels were significantly increased in severe COVID-19 patients and those harbouring 
relevant variants. Thus, we reveal for the first time an ANN accurately predicting ICU 
hospitalization and death in COVID-19 patients, based on genetic variants in comple-
ment genes, age and gender. Importantly, we confirm that genetic dysregulation is 
associated with impaired complement phenotype.

K E Y W O R D S
artificial intelligence, complement, complement inhibition, COVID-19, genetic susceptibility, 
SARS-CoV2
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variants predicting severe COVID-19. Then, for the first time in 
COVID-19 patients, we sought to develop an artificial neural net-
work (ANN) that predicts morbidity and mortality incorporating ge-
netic variants and defining characteristics such as age and gender, 
but also to validate that the identified complement-related variants 
are associated with an impaired complement phenotype who might 
benefit from complement inhibitors.

2  |  METHODS

2.1  |  Artificial neural networks

Development of artificial neural networks (ANNs) is based on the 
concept of the biological neural network of the human brain and was 
initially used for medicine research purposes to simulate strongly 
non-linear relationships between numerous input and output 
parameters.24-30 ANN models were subsequently introduced into 
the wider context of engineering disciplines,31,32 which significantly 
enriched the mathematical background underpinning ANN. At pre-
sent, ANNs are widely employed on an interdisciplinary interface 
between various disciplines.17 A few studies employing ANNs have 
also emerged focussing on COVID-19 prediction problems.33-40

The basic building block of ANNs is the artificial neuron, which 
is a mathematical model mimicking the behaviour of the biological 
neuron (Figure  1). Information is passed onto the artificial neuron 
as an input parameter and is then processed using a mathematical 
function to derive an output which determines the behaviour of the 
neuron (similar to the fire-or-not situation of the biological neuron). 
Before the information enters the neuron, it is weighted in order to 
simulate the random nature of the biological neuron. A group of such 
neurons comprise an ANN, similar to the structure of biological neu-
ral networks. To define an ANN, (i) the architecture of the ANN, (ii) 
the training algorithm used during the ANN’s training stage and (iii) 
the mathematical functions underpinning the mathematical model 
are required.

The architecture of the ANN defines how the artificial neurons 
are organized and how the information flows within the network. 
For example, if the neurons are organized in more than one layer, 
then the network is called a multilayer ANN. The training stage can 

be considered as a function minimization problem, in which the op-
timum weight values need to be determined by minimizing an error 
function.

2.2  |  Patient population

We prospectively recruited consecutive adult patients of Caucasian 
origin, hospitalized due to COVID-19 in our referral centres (G 
Papanicolaou, Attikon Hospital) (April-December 2020). RT-PCR 
(reverse-transcriptase polymerase chain reaction) confirmed SARS-
COV2 infection. Patients’ history and course were documented by 
treating physicians following patients up to discharge or death. Our 
study was approved by Institutional Review Boards (IRBs) of refer-
ral centres and conducted according to the Declaration of Helsinki.

We studied 133 COVID-19 patients, 80  hospitalized in 
COVID-19 general ward (GW-not in ICU) and 53 hospitalized in in-
tensive care units (ICU). Figure 2 presents patients characteristics 
according to age, gender and disease severity.

2.3  |  Genetic studies

Genetic studies were performed as previously described.17 
Briefly, peripheral blood samples were used to isolate genomic 
DNA that underwent next-generation sequencing (NGS, MiniSeq, 
Illumina, San Diego, California) analysis with our customized 
gene panel for complement factor H/CFH, CFB, CFH-related, CFD, 
CD55, C3, C5, CFI, CD46, thrombomodulin/THBD, and A Disintegrin 
and Metalloproteinase with Thrombospondin motifs (ADAMTS13). 
DesignStudio (Illumina, San Diego, California) was used for probes 
design, in order to cover all exonic regions spanning 15 bases into 
introns (coverage 98%).

2.4  |  Functional assessment of 
complement activation

Plasma was isolated from EDTA tubes collected at hospitalization 
for non-ICU patients or at ICU admission for ICU patients and stored 

F I G U R E  1  Typical biological neuron 
structure. The artificial neural network 
mathematical models have an analogous 
simplified architecture resembling the 
structure of neurons in the biological 
prototype
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immediately at −800C. Taking into account the difficulties of func-
tional complement assessment in clinical laboratories,41 we studied 
markers that would be potentially accessible in everyday clinical 
practice or the setting of a clinical trial. Therefore, we measured 
THBD (R&D, Bio-Techne), C3a (Invitrogen, Thermo Fisher Scientific) 
and C5a (Affymetrix, Bender Medsystems) using commercially 
available ELISA assays. Statistical comparison of continuous vari-
ables between groups was performed using the statistical program 
SPSS 23.0 (IBM SPSS Statistics for Windows, Version 23.0.; IBM 
Corp). Descriptive statistics were described using median (inter-
quartile range) or mean ±standard deviation for continuous varia-
bles according to normality, and frequency for categorical variables. 
Continuous variables were compared using t test or Mann-Whitney, 
according to normality.

2.5  |  Criteria for the optimum database filtering

Given the essentially infinite number of available variant combina-
tions (in excess of yotta = 1024), advanced computational analysis 
tools were required to correlate the effect of variant combinations 
with the severity of COVID-19 infection. To reduce the computa-
tional complexity associated with the significant number of available 
variants, a pre-defined set of criteria was used to identify the mini-
mum number of required variants, which are mainly associated with 
severe COVID-19 infection.

Criterion I:Variants which are present in more than 90% or less 
than 10% of COVID-19 infected patients are considered as non-
associated with COVID-19 severity.

Criterion II:From the remaining available variant combinations, 
single variant types associated with severe complications of 
COVID-19 infection are investigated. This is achieved using the 
following II.I and II.II Criteria.
Criterion II.Ι:Variants are identified, which are present in the 
90% of COVID-19 patients requiring intensive care unit (ICU) 
and at the same time are not present in the 90% of patients not 
requiring ICU hospitalization.
Criterion II.ΙI:Variants are identified, which are not present in the 
90% of COVID-19 patients requiring ICU and at the same time 
are present in the 90% of COVID-19 patients not requiring ICU. 
Criterion II.II is essentially the reverse of Criterion II.I.
This constraint was driven by the computational requirements 

during the training and development of ANN models. In this study, 
different architectures of ANNs were trained and developed and 
the main stages are summarized in the results section, later in the 
text.

3  |  RESULTS

3.1  |  Genetic analysis

We identified a total of 381 variants, ranging from 40 to 101 per 
patient (mean value 71 and standard deviation 12). The database of 
variants is presented as supplementary material in the supplemental 
excel file entitled variants Database of 133 COVID-19 Patients.

Using the pre-defined set of criteria, a total of 381 variants are re-
duced to 5 critical variants, which are mainly associated with severe 
COVID-19 infection (morbidity and mortality), as shown in Table 1: 

F I G U R E  2  Study population 
characteristics categorized by age, 
gender and infection severity (requiring 
or not requiring intensive care unit (ICU), 
mortality)
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rs2547438 (C3), rs2250656 (C3), rs1042580 (THBD), rs800292 
(CFH) and rs414628 (CFHR1). Variant characteristics are shown in 
detail in Supplementary Table 1. Interestingly, Figure 3 shows that 
variants satisfying Criterion II are by 15% more present in male than 
in female patients and the reverse.

The number of variant combinations is defined as follows:

where nv is the number of variants and npv is the number of variant 
patterns.

In this study, nv = 381 number of variants were investigated for 
a 133 COVID-19 patient sample.

3.2  |  Development of ANNs

The database used in this research comprised of 133 data sets, with 
each data set containing 7 input parameters (age, gender and 5 pa-
rameters indicating the presence or absence of each of the 5 criti-
cal variants). Figure 4 illustrates a statistical analysis of the selected 
input parameters.

The 133 data sets were divided into three separate sets. 
Specifically, 89 of the 133 (66.92%) data sets were designated as 
training data sets, 22 of the 133 (16.54%) as validation data sets, 
while the remaining 22 (16.54%) data sets were used as testing data 
sets. The assignment of patients to the various data sets was algo-
rithmic and pseudo-random in nature, in order to prevent any po-
tential bias. It was ensured that the composition of the final data 
sets in terms of input parameters was representative of the entire 
population.

For the training and the development of ANNs, it is necessary 
to define a number of parameters, related to their architecture 
and algorithmic implementation. Rather than relying on expertise 
or trial-and-error approaches, a number of alternatives were ex-
amined for these parameters, leading to the training and devel-
opment of a plethora of possible ANN model implementations. 
Supplementary Table 2 presents all the parameters considered for 
the development of multiple alternative ANN architectures in the 
present study. ANNs with one or two hidden layers were devel-
oped and trained. The number of neurons per hidden layer ranged 
from 1 to 30, with an incremental step of 1. Ten different initial 
values of weights and biases were applied for each architecture. 
Two functions, the mean square error (MSE) and sum square error 
(SSE) functions, were used as cost functions, during the training 
and validation process. Ten functions were used as transfer or ac-
tivation functions. Considering that the implementation of 10 dif-
ferent transfer function results in 1000 different ANNs, different 
dual combinations of the 10 transfer functions were investigated. 
During the training stage of ANNs, the 133 data sets were used 
with and without normalization techniques. When normalization of 
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the data was conducted, the minmax normalization technique in 
the range [0.10, 0.90] and [−1.00, 1.00] Zscore normalization tech-
nique were implemented.

The Levenberg-Marquardt algorithm was used for the training 
of the ANNs. Overall, the alternative parameters, examined for the 
ANN development phase, resulted in the creation and evaluation of 
75.000.000 different ANN models, which were ranked according to 
the prediction accuracy of the COVID-19 severity.

The architecture of the ANN with the highest prediction accu-
racy is presented in Figure 5; it consists of 2 hidden layers with 17 
neurons in the first hidden layer and 11 neurons in the second hidden 
layer. The optimum ANN predicts successfully COVID-19  severity 
(not ICU, ICU or mortality) in 89.47% of the study population, which 
corresponds to 90.8% male and 86.96% female patients (Figure 6).

3.3  |  Functional assessment of 
complement activation

THBD values were significantly increased in patients requiring ICU 
hospitalization compared to non-ICU patients (median 2.3, inter-
quartile range [1.6] versus 1.4 [0.79] ng/ml, p = 0.025) and patients 
harbouring the rs1042580 (THBD) variant (p = 0.032). Similarly, C3a 
values were significantly increased in patients requiring ICU hospi-
talization compared to non-ICU patients (410 [14.1] versus 312 [19.1] 
ng/ml, p = 0.035) and trended towards a significant increase in pa-
tients harbouring one of the two critical C3 alleles (rs2547438 or 
rs2250656, p = 0.092). Despite increased levels of C5a in ICU pa-
tients, this difference did not reach statistical significance (72.1 [7.2] 
versus 43.4 [11.3] ng/ml, p = 0.244).

F I G U R E  3  Variant frequency distribution based on gender. The variants satisfying Criterion II are 15% more present in male than in 
female patients and the reverse (red and blue bars denote higher percentage variant presence in female and male patients respectively)

Nr rs Gene Posi�on Female                          Male
43,9187081763C8347452sr001
27,7112672032DBHT0852401sr711
92,51270246691HFC793155sr462
92,51332246691HFC292008sr562
41,5143581763C6560522sr201
41,51240108691HFC0324sr233
41,518701086911RHFC826414sr333
46,4191776970264DC4417sr773
90,4198977663C03071sr81
90,4128701763C0852401sr58
99,319154976911RHFC957244sr713
99,311475976911RHFC405734sr913
99,311675976911RHFC529424sr023
99,319485976911RHFC227424sr223
99,314816976911RHFC705993sr423
99,310426976911RHFC187834sr523
78,313349976911RHFC915804sr723
94,3195565970264DC9412691sr373
22,312937576913RHFC443004sr503
29,2180901363131STMADA325586sr442
48,210911086911RHFC976093sr533
48,211231086911RHFC233104sr733
97,2188259263131STMADAAN022
29,1111597663C4897722sr42
29,1136597663C3897722sr62
72,1117509663C11596511sr14
75,01653368DFC60501sr01
73,0184232363131STMADA4734903sr652
21,0124709663CAN34
21,0164709663C80596511sr44
21,0117709663C7655473sr54
21,0150809663C70596511sr64
21,0137239663C29496511sr05
21,0171339663C9831422sr15

Variant
Variant frequency based on 

Sex difference (%)
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4  |  DISCUSSION

We reveal for the first time an ANN able to accurately predict ICU 
hospitalization and death in COVID-19 patients, based on genetic 
variants in complement genes, age and gender. Importantly, we also 
confirm that genetic dysregulation is associated with an impaired 
complement phenotype.

Complement-related genetic variants have been investigated 
in limited COVID-19 studies.15-17 Valenti et al. have recently iden-
tified a variant (rs11385942) predisposing to severe COVID-19 
that was associated with increased complement activation.15 Of 
note, this variant is not mapped in any complement gene coding 
loci, but it may be indirectly associated with enhanced comple-
ment activation during systemic inflammation and organ dam-
age.42 Complement variants have been documented by genetic 
and transcriptional analysis, reporting 23  study-wide significant 

single-nucleotide polymorphisms (SNPs) in 12 complement 
genes.16 An integrative analysis of molecular and functional data 
revealed four SNPs in three human complement genes (C3, C4BPA, 
C5AR1) that encode for missense polymorphic variants associated 
with viral susceptibility.43

Considering that these analyses were not able to provide tools 
for disease severity prediction that could be helpful in clinical prac-
tice or a clinical trial setting, our group recently developed an algo-
rithm identifying complement-related variants in C3, CFH and THBD 
that predict COVID-19 severity.17 Nevertheless, the prediction rate 
of this logical algorithm reached values above 80% only in patients 
not requiring ICU hospitalization and did not incorporate basic fea-
tures associated with morbidity and mortality, such as age and gen-
der. In the present study, we improved this logical algorithm in order 
to identify both ICU and non-ICU patients. Using the updated algo-
rithm, we identified variants in complement-related genes (C3, CFH, 

F I G U R E  4  Scatterplot matrix of COVID-19 samples for the seven input parameters. Each input parameter is plotted against every other 
one, with different plot types drawn depending on the pair combination. Especially, the diagonal facets show the distributions of values 
for each parameter, ignoring all others. Along the right column, box plots show the distribution of each continuous parameter against 
the COVID-severe cases. The same is depicted in histogram form at the bottom row. Finally, dot plots show the relationships between 
parameter pairs
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CFRH and THBD), among a targeted panel for complement-related 
genes, known to be dysregulated in complement-related disorder. 
Two of the five critical variants were also the ones that composed 
the initial algorithm. Based on the five critical variants derived from 
the updated algorithm, we further implemented an ANN incorporat-
ing age and gender. This tool is able to predict not only morbidity but 
also mortality in COVID-19 patients.

Indeed, a tool for early and individualized prediction of morbidity 
and mortality is a largely unmet clinical need not only in this COVID-19 
pandemic but also in several clinical settings. In COVID-19, ANNs have 
been only used to predict outbreaks, and cases, deaths and hospital 
bed occupancy in the short term.44,45 However, in the era of precision 
medicine, individualized genetic data are able to further implement 
predictions of morbidity and mortality at a very early time point. This 

prediction has an added value when it concerns early identification of 
patients that would potentially benefit from a safe and effective ther-
apeutic approach.46 In our case of a targeted complement-related ge-
netic panel, individualized use of complement inhibitors could be of 
significant benefit in COVID-19 and other complement-related disor-
ders. Therefore, the present ANN may serve as a prototype to further 
expand applications of precision medicine in this field.

The ANN presented in our study also incorporates the effect of 
age and gender on COVID-19 morbidity and mortality. Indeed, male 
COVID-19 patients show increased morbidity and mortality.47 In 
addition, higher complement activity has been observed in healthy 
male versus female subjects.48 In line with our previous analysis, the 
present study confirms differences in complement-related germline 
variants between male and female COVID-19 patients. Other factors 

F I G U R E  5  Architecture of the optimum ANN model. The input layer consists of seven parameters (input) which are age and gender of 
patient, and five crucial variants, while the output layer consists of a single parameter (output) which is the infection severity (requiring or 
not requiring intensive care unit, fatality). The two hidden layers consist of 17 and 11 neurons respectively. To the bottom of the schematic, 
the optimum transfer functions for the first hidden layer, second hidden layer and output layer are the radial basis transfer function, 
normalized radial basis transfer function and radial basis transfer function respectively
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that may be also associated with differences in morbidity and mortal-
ity, such as differences in socioeconomic factors or comorbidities, are 
also incorporated in the algorithm by the addition of age and gender.

Our study is also the first to show an association between gen-
otype and phenotype in complement dysregulation of COVID-19 
patients. Despite difficulties of functional complement assessment 
in clinical laboratories,41 our results are in line with other functional 
studies in COVID-19 showing increased THBD and C3a levels in pa-
tients with severe disease.49,50 More than that, we also associated 
impaired levels with the presence of variants recognized as critical in 
the present study. These data highlight the potential of complement-
related variants to predict complement dysregulation and presumably 
benefit from complement inhibition. The present study also focusses 
on alternative pathway variants, since this is directly activated by 
SARS-COV-2.7 In terms of complement inhibition, different pathways 
have been studied. In spite of encouraging results with different in-
hibitors,19-22 randomized studies have failed to show positive results 
yet. These could be attributed to several reasons, including study 
design, patient populations and choice of an appropriate inhibitor 
based on mechanistic evaluations.51 Therefore, broadening comple-
ment inhibition in COVID-19 requires well-designed studies, as well 
as appropriate patient selection that would overcome not only meth-
odological but also practical issues of cost and availability during the 
pandemic. Our study has some limitations. Despite the prospective 
patient recruitment, our findings cannot be considered as definitive, 
indicating the need for future studies. In addition, our patient popu-
lation is rather small, and therefore, the suggested ANN needs to be 
further validated in other real-world cohorts.

5  |  CONCLUSIONS

An artificial neural network model was developed, trained and evalu-
ated targeted to the prediction morbidity and mortality ratios of 
COVID-19 patients. A number of complement-related genetic variants, 
associated with severe COVID-19, were identified and used as inputs 
to the model, together with patient's age and gender. Using a sample 
of 133 patients, the developed ANN model was found capable to suc-
cessfully predict COVID-19 severity in 89.47% of the study population.

In conclusion, germline complement-related genetic variants along 
with age and gender predict morbidity and mortality in COVID-19 pa-
tients. Given that vaccinations and viral mutations constantly change 
the landscape of COVID-19, a prediction tool based on such robust vari-
ables is of high importance in the future of this pandemic. Additionally, 
such a prediction tool is also expected to significantly contribute to bet-
ter selection of patients that would benefit from targeted complement 
inhibition, considering the clinical phenotype associated with these 
variants. Last but not least, this novel approach of artificial intelligence 
paves the way for future application in additional clinical entities.
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F I G U R E  6  Percentage predictions of COVID-19 severity based on the optimum ANN model. The first group of three column bars 
represents the correct predictions of the ANN model for patients that did not require ICU treatment (achieving more than 93% successful 
predictions). The percentage of successful predictions is better for the female patients (more than 96%), while for male ones the respective 
percentage is 91.67%. The last group of three column bars represents the correct predictions of the ANN model for all cases of patient 
infection severity (requiring or not requiring intensive care unit and died). The percentage of successful predictions is more than 90% for 
male patients and close to 90% for female ones, while the combined percentage is 89.47%. The remaining groups of column bars report the 
respective results for the patients requiring ICU and those who have died
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