117 research outputs found

    Enhanced Stability of Iridium Nanocatalysts via Exsolution for the CO<sub>2</sub> Reforming of Methane

    Get PDF
    \ua9 2023 The Authors. Published by American Chemical Society. The reforming reactions of greenhouse gases require catalysts with high reactivity, coking resistance, and structural stability for efficient and durable use. Among the possible strategies, exsolution has been shown to demonstrate the requirements needed to produce appropriate catalysts for the dry reforming of methane, the conversion of which strongly depends on the choice of active species, its interaction with the support, and the catalyst size and dispersion properties. Here, we exploit the exsolution approach, known to produce stable and highly active nanoparticle-supported catalysts, to develop iridium-nanoparticle-decorated perovskites and apply them as catalysts for the dry reforming of methane. By studying the effect of several parameters, we tune the degree of exsolution, and consequently the catalytic activity, thereby identifying the most efficient sample, 0.5 atomic % Ir-BaTiO3, which showed 82% and 86% conversion of CO2 and CH4, respectively. By comparison with standard impregnated catalysts (e.g., Ir/Al2O3), we benchmark the activity and stability of our exsolved systems. We find almost identical conversion and syngas rates of formation but observe no carbon deposition for the exsolved samples after catalytic testing; such deposition was significant for the traditionally prepared impregnated Ir/Al2O3, with almost 30 mgC/gsample measured, compared to 0 mgC/gsample detected for the exsolved system. These findings highlight the possibility of achieving in a single step the mutual interaction of the parameters enhancing the catalytic efficiency, leading to a promising pathway for the design of catalysts for reforming reactions

    Magnetic Resonance Spectroscopy of the Breast at 3T: Pre- and Post-Contrast Evaluation for Breast Lesion Characterization

    Get PDF
    Purpose. To determine whether in vivo proton magnetic resonance spectroscopy at 3T can provide accurate breast lesion characterization, and to determine the effect of gadolinium on the resonance of tCho. Methods. Twenty-four positive-mammogram patients were examined on a 3T MR scanner. 1H-MRS was performed before and after gadolinium administration. tCho peak was qualitatively evaluated before and after contrast injection. Results. Fourteen out of 27 lesions proved to be malignant after histopathological diagnosis. Using 1H-MRS, before contrast injection, 6/14 confirmed malignancies and 11/13 benign lesions were correctly classified; while, after contrast injection, 11/14 confirmed malignancies and 12/13 benign processes were correctly classified. Post gadolinium 1H-MRS proved useful in picking up tCho signal, improving the overall accuracy, sensitivity, and specificity by 35%, 83%, and 9%, respectively. Conclusion. 1H-MRS overall accuracy, sensitivity, and specificity in detecting breast lesion's malignancy were increased after gadolinium administration. It is prudent to perform 1H-MRS before contrast injection in large breast lesions to avoid choline underestimation. In cases of small or non-mass lesions, it is recommended to perform 1H-MRS after contrast injection for better voxel prescription to enable a reliable preoperative diagnosis

    Improving fiducial and prostate capsule visualization for radiotherapy planning using MRI.

    Get PDF
    Background and purpose Intraprostatic fiducial markers (FM) improve the accuracy of radiotherapy (RT) delivery. Here we assess geometric integrity and contouring consistency using a T2*-weighted (T2*W) sequence alone, which allows visualization of the FM.Material and methods Ten patients scanned within the Prostate Advances in Comparative Evidence (PACE) trial (NCT01584258) had prostate images acquired with computed tomography (CT) and Magnetic Resonance (MR) Imaging: T2-weighted (T2W) and T2*W sequences. The prostate was contoured independently on each imaging dataset by three clinicians. Interobserver variability was assessed using comparison indices with Monaco ADMIRE (research version 2.0, Elekta AB) and examined for statistical differences between imaging sets. CT and MR images of two test objects were acquired to assess geometric distortion and accuracy of marker positioning. The first was a linear test object comprising straight tubes in three orthogonal directions, the second was a smaller test object with markers suspended in gel.Results Interobserver variability for prostate contouring was lower for both T2W and T2*W compared to CT, this was statistically significant when comparing CT and T2*W images. All markers are visible in T2*W images with 29/30 correctly identified, only 3/30 are visible in T2W images. Assessment of geometric distortion revealed in-plane displacements were under 0.375 mm in MRI, and through plane displacements could not be detected. The signal loss in the MR images is symmetric in relation to the true marker position shown in CT images.Conclusion Prostate T2*W images are geometrically accurate, and yield consistent prostate contours. This single sequence can be used to identify FM and for prostate delineation in a mixed MR-CT workflow

    Transcriptome-wide association study of schizophrenia and chromatin activity yields mechanistic disease insights

    Get PDF
    Genome-wide association studies (GWAS) have identified over 100 risk loci for schizophrenia, but the causal mechanisms remain largely unknown. We performed a transcriptome-wide association study (TWAS) integrating a schizophrenia GWAS of 79,845 individuals from the Psychiatric Genomics Consortium with expression data from brain, blood, and adipose tissues across 3,693 primarily control individuals. We identified 157 TWAS-significant genes, of which 35 did not overlap a known GWAS locus. Of these 157 genes, 42 were associated with specific chromatin features measured in independent samples, thus highlighting potential regulatory targets for follow-up. Suppression of one identified susceptibility gene, mapk3, in zebrafish showed a significant effect on neurodevelopmental phenotypes. Expression and splicing from the brain captured most of the TWAS effect across all genes. This large-scale connection of associations to target genes, tissues, and regulatory features is an essential step in moving toward a mechanistic understanding of GWAS

    Biallelic SQSTM1 mutations in early-onset, variably progressive neurodegeneration.

    Get PDF
    OBJECTIVE: To characterize clinically and molecularly an early-onset, variably progressive neurodegenerative disorder characterized by a cerebellar syndrome with severe ataxia, gaze palsy, dyskinesia, dystonia, and cognitive decline affecting 11 individuals from 3 consanguineous families. METHODS: We used whole-exome sequencing (WES) (families 1 and 2) and a combined approach based on homozygosity mapping and WES (family 3). We performed in vitro studies to explore the effect of the nontruncating SQSTM1 mutation on protein function and the effect of impaired SQSTM1 function on autophagy. We analyzed the consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in vivo using zebrafish as a model. RESULTS: We identified 3 homozygous inactivating variants, including a splice site substitution (c.301+2T>A) causing aberrant transcript processing and accelerated degradation of a resulting protein lacking exon 2, as well as 2 truncating changes (c.875_876insT and c.934_936delinsTGA). We show that loss of SQSTM1 causes impaired production of ubiquitin-positive protein aggregates in response to misfolded protein stress and decelerated autophagic flux. The consequences of sqstm1 down-modulation on the structural integrity of the cerebellum in zebrafish documented a variable but reproducible phenotype characterized by cerebellum anomalies ranging from depletion of axonal connections to complete atrophy. We provide a detailed clinical characterization of the disorder; the natural history is reported for 2 siblings who have been followed up for >20 years. CONCLUSIONS: This study offers an accurate clinical characterization of this recently recognized neurodegenerative disorder caused by biallelic inactivating mutations in SQSTM1 and links this phenotype to defective selective autophagy

    Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor.

    Get PDF
    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder

    Recent developments in the genetics of childhood epileptic encephalopathies: impact in clinical practice

    Full text link

    Inhibition of Pediatric Glioblastoma Tumor Growth by the Anti-Cancer Agent OKN-007 in Orthotopic Mouse Xenografts

    Get PDF
    We thank the Peggy and Charles Stephenson Cancer Center at the University of Oklahoma, Oklahoma City, OK, for funding, who received an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20 GM103639 for the use of the Histology and Immunohistochemistry Core for providing immunohistochemistry and photographic services. This work was also supported by Oklahoma State University, Center of Veterinary Health Science (Support Grant AE-1-50060 to P.C.S.), the Musella Foundation (R.A.T.), and the Childhood Brain Tumor Foundation (R.A.T.).Pediatric glioblastomas (pGBM), although rare, are one of the leading causes of cancer-related deaths in children, with tumors essentially refractory to existing treatments. Here, we describe the use of conventional and advanced in vivo magnetic resonance imaging (MRI) techniques to assess a novel orthotopic xenograft pGBM mouse (IC-3752GBM patient-derived culture) model, and to monitor the effects of the anti-cancer agent OKN-007 as an inhibitor of pGBM tumor growth. Immunohistochemistry support data is also presented for cell proliferation and tumor growth signaling. OKN-007 was found to significantly decrease tumor volumes (p<0.05) and increase animal survival (p<0.05) in all OKN-007-treated mice compared to untreated animals. In a responsive cohort of treated animals, OKN-007 was able to significantly decrease tumor volumes (p<0.0001), increase survival (p<0.001), and increase diffusion (p<0.01) and perfusion rates (p<0.05). OKN-007 also significantly reduced lipid tumor metabolism in responsive animals (Lip1.3 and Lip0.9)-to-creatine ratio (p<0.05), as well as significantly decrease tumor cell proliferation (p<0.05) and microvessel density (p<0.05). Furthermore, in relationship to the PDGFRα pathway, OKN-007 was able to significantly decrease SULF2 (p<0.05) and PDGFR-α (platelet-derived growth factor receptor-α) (p<0.05) immunoexpression, and significantly increase decorin expression (p<0.05) in responsive mice. This study indicates that OKN-007 may be an effective anti-cancer agent for some patients with pGBMs by inhibiting cell proliferation and angiogenesis, possibly via the PDGFRα pathway, and could be considered as an additional therapy for pediatric brain tumor patients.Yeshttp://www.plosone.org/static/editorial#pee

    Neuroimaging methods in epilepsy of temporal origin

    No full text
    Background: Temporal Lobe Epilepsy (TLE) comprises the most common form of symptomatic refractory focal epilepsy in adults. Accurate lateralization and localization of the epileptogenic focus are a significant prerequisite for determining surgical candidacy once the patient has been deemed medically intractable. Structural MR imaging, clinical, electrophysiological, and neurophysiological data have an established role in the localization of the epileptogenic foci. Nevertheless, hippocampal sclerosis cannot be detected on MR images in more than 30% of patients with TLE, and the presurgical assessment remains controversial. Discussion: In the last years, advanced MR imaging techniques, such as 1H-MRS, DWI, DTI, DSCI, and fMRI, may provide valuable additional information regarding the physiological and metabolic characterization of brain tissue. MR imaging has shifted towards functional and molecular imaging, thus, promising to improve the accuracy regarding the lateralization and the localization of the epileptogenic focus. Additionally, nuclear medicine studies, such as SPECT and PET imaging modalities, have become an asset for the decoding of brain function and activity, and can be diagnostically helpful as well, since they provide valuable data regarding the altered metabolic activity of the seizure foci. Conclusion: Overall, advanced MRI, SPECT, and PET imaging techniques are increasingly becoming an essential part of TLE diagnostics, when the epileptogenic area is not identified on structural MRI or when structural MRI, clinical, and electrophysiological findings are not in concordance. © 2019 Bentham Science Publishers
    corecore