8 research outputs found

    Underlying Anthropogenic Driving Factors of Forest Landscape Degradation in the Kilimanjaro World Heritage Site, Tanzania Using Survey-based Data

    Get PDF
    This study aimed to investigate the underlying anthropogenic driving factors of forest landscape degradation in the Kilimanjaro World Heritage Sites (WHS), Tanzania using survey-based data. The essence is to support strategic policies for forest landscape protection and natural heritage sustainability. The research employed empirical data using mixed questionnaires of experts and residents to identify various indirect anthropogenic driving factors of forest degradation, analyze rural poverty and causal mechanisms as indirect anthropogenic drivers of forest degradation, and evaluate the level of awareness and community involvement in forest protection. ArcGIS was used to generate the Maps. About 140 sample sizes were utilized for this study. Using purposive and simple random techniques, about 46 and 100 mixed questionnaires were distributed to experts in forest guard and residents, respectively. Data were analyzed using quantitative and qualitative techniques. Findings showed that indirect factors of forest degradation include high tourism demand, poverty, culture and tradition of local communities, lack of forest protection and conservation education, and insufficient land availability. Also, findings showed that rural poverty as an indirect anthropogenic driving factor of forest degradation is attributed to unemployment in rural areas, inadequate land for agriculture, and insufficient productive forestry availability. Additionally, this study revealed that residents are aware that the forest is under the government’s protection, and most people in local communities are not involved in activities for forest protection. Therefore, the study suggests that the locals should be involved in the activities that promote forest protection for effective control and management. Alternative heating methods should also be explored to reduce much pressure on the available forest to improve the natural heritage sustainability of natural WHS found in Sub-Saharan Africa and other parts of the Global South

    Miocene transgression in the central and eastern parts of the Sivas Basin (Central Anatolia, Turkey) and the Cenozoic palaeogeographical evolution

    No full text
    International audienceWe present here a reappraisal of the tectonic setting, stratigraphy and palaeogeography of the central part of the Sivas Basin from Palaeocene to late Miocene. The Sivas Basin is located in the collision zone between the Pontides (southern Eurasia) and Anatolia (a continental block rifted from Gondwana). The basin overlies ophiolites that were obducted onto Anatolia from Tethys to the north. The Central Anatolian Crystalline Complex (CACC) experienced similar ophiolite obduction during Campanian time, followed by exhumation and thrusting onto previously emplaced units during Maastrichtian time. To the east, crustal extension related to exhumation of the CACC created grabens during the early Tertiary, including the Sivas Basin. The Sivas Basin underwent several tectonic events during Paleogene–Neogene. The basin fill varies, with several sub-basins, each being characterised by a distinctive sequence, especially during Oligocene and Miocene. Evaporite deposition in the central part of the basin during early Oligocene was followed by mid-late Oligocene fluvio-lacustrine deposition. The weight of overlying fluvial sediments triggered salt tectonics and salt diapir formation. Lacustrine layers that are interbedded within the fluviatile sediments have locally yielded charophytes of late Oligocene age. Emergent areas including the pre-existing Sivas Basin and neighbouring areas were then flooded from the east by a shallow sea, giving rise to a range of open-marine sub-basins, coralgal reef barriers and subsiding, restricted-marine sub-basins. Utilising new data from foraminifera, molluscs, corals and nannoplankton, the age of the marine transgression is reassessed as Aquitanian. Specifically, age-diagnostic nannoplankton assemblages of classical type occur at the base of the transgressive sequence. However, classical stratigraphic markers have not been found within the planktic foraminiferal assemblages, even in the open-marine settings. In the restricted-marine sediments, there are rich planktic foraminiferal assemblages of classical type but these are of little use in stratigraphy. In contrast, the gastropod fauna indicate a Burdigalian age. Sediment reworking in the restricted-marine environments precludes stratigraphic determination. In such environments, micro- and nano-organisms experienced atypical developmental conditions. The small benthic foraminifera and associated ostracod assemblages are good indicators of salinity which varied considerably within the restricted-marine sub-basins. Some of the corals within the coralgal reefs barriers are also dated as Aquitanian. A combination of the salt tectonics and the late Miocene north-westward-verging thrusting created the present basin complexity
    corecore