26 research outputs found

    Analytical Processing of Binary Mixture Information by Olfactory Bulb Glomeruli

    Get PDF
    Odors are rarely composed of a single compound, but rather contain a large and complex variety of chemical components. Often, these mixtures are perceived as having unique qualities that can be quite different than the combination of their components. In many cases, a majority of the components of a mixture cannot be individually identified. This synthetic processing of odor information suggests that individual component representations of the mixture must interact somewhere along the olfactory pathway. The anatomical nature of sensory neuron input into segregated glomeruli with the bulb suggests that initial input of odor information into the bulb is analytic. However, a large network of interneurons within the olfactory bulb could allow for mixture interactions via mechanisms such as lateral inhibition. Currently in mammals, it is unclear if postsynaptic mitral/tufted cell glomerular mixture responses reflect the analytical mixture input, or provide the initial basis for synthetic processing with the olfactory system. To address this, olfactory bulb glomerular binary mixture representations were compared to representations of each component using transgenic mice expressing the calcium indicator G-CaMP2 in olfactory bulb mitral/tufted cells. Overall, dorsal surface mixture representations showed little mixture interaction and often appeared as a simple combination of the component representations. Based on this, it is concluded that dorsal surface glomerular mixture representations remain largely analytical with nearly all component information preserved

    Maturation of complex synaptic connections of layer 5 cortical axons in the posterior thalamic nucleus requires SNAP25

    No full text
    Synapses are able to form in the absence of neuronal activity, but how is their subsequent maturation affected in the absence of regulated vesicular release? We explored this question using 3D electron microscopy and immunoelectron microscopy analyses in the large, complex synapses formed between cortical sensory efferent axons and dendrites in the posterior thalamic nucleus. Using a Synaptosome-associated protein 25 conditional knockout (Snap25 cKO), we found that during the first 2 postnatal weeks the axonal boutons emerge and increase in the size similar to the control animals. However, by P18, when an adult-like architecture should normally be established, axons were significantly smaller with 3D reconstructions, showing that each Snap25 cKO bouton only forms a single synapse with the connecting dendritic shaft. No excrescences from the dendrites were formed, and none of the normally large glomerular axon endings were seen. These results show that activity mediated through regulated vesicular release from the presynaptic terminal is not necessary for the formation of synapses, but it is required for the maturation of the specialized synaptic structures between layer 5 corticothalamic projections in the posterior thalamic nucleus

    Two GABAergic Intraglomerular Circuits Differentially Regulate Tonic and Phasic Presynaptic Inhibition of Olfactory Nerve Terminals

    No full text
    Olfactory nerve axons terminate in olfactory bulb glomeruli forming excitatory synapses onto the dendrites of mitral/tufted (M/T) and juxtaglomerular cells, including external tufted (ET) and periglomerular (PG) cells. PG cells are heterogeneous in neurochemical expression and synaptic organization. We used a line of mice expressing green fluorescent protein under the control of the glutamic acid decarboxylase 65-kDa gene (GAD65+) promoter to characterize a neurochemically identified subpopulation of PG cells by whole cell recording and subsequent morphological reconstruction. GAD65+ GABAergic PG cells form two functionally distinct populations: 33% are driven by monosynaptic olfactory nerve (ON) input (ON-driven PG cells), the remaining 67% receive their strongest drive from an ON→ET→PG circuit with no or weak monosynaptic ON input (ET-driven PG cells). In response to ON stimulation, ON-driven PG cells exhibit paired-pulse depression (PPD), which is partially reversed by GABAB receptor antagonists. The ON→ET→PG circuit exhibits phasic GABAB-R-independent PPD. ON input to both circuits is under tonic GABAB-R-dependent inhibition. We hypothesize that this tonic GABABR-dependent presynaptic inhibition of olfactory nerve terminals is due to autonomous bursting of ET cells in the ON→ET→PG circuit, which drives tonic spontaneous GABA release from ET-driven PG cells. Both circuits likely produce tonic and phasic postsynaptic inhibition of other intraglomerular targets. Thus olfactory bulb glomeruli contain at least two functionally distinct GABAergic circuits that may play different roles in olfactory coding

    Cytokinesis of neuroepithelial cells can divide their basal process before anaphase

    No full text
    Neuroepithelial (NE) cells, the primary stem and progenitor cells of the vertebrate central nervous system, are highly polarized and elongated. They retain a basal process extending to the basal lamina, while undergoing mitosis at the apical side of the ventricular zone. By studying NE cells in the embryonic mouse, chick and zebrafish central nervous system using confocal microscopy, electron microscopy and time-lapse imaging, we show here that the basal process of these cells can split during M phase. Splitting occurred in the basal-to-apical direction and was followed by inheritance of the processes by either one or both daughter cells. A cluster of anillin, an essential component of the cytokinesis machinery, appeared at the distal end of the basal process in prophase and was found to colocalize with F-actin at bifurcation sites, in both proliferative and neurogenic NE cells. GFP–anillin in the basal process moved apically to the cell body prior to anaphase onset, followed by basal-to-apical ingression of the cleavage furrow in telophase. The splitting of the basal process of M-phase NE cells has implications for cleavage plane orientation and the relationship between mitosis and cytokinesis

    Rab3 GTPase-activating protein regulates synaptic transmission and plasticity through the inactivation of Rab3

    No full text
    Rab3A small G protein is a member of the Rab family and is most abundant in the brain, where it is localized on synaptic vesicles. Evidence is accumulating that Rab3A plays a key role in neurotransmitter release and synaptic plasticity. Rab3A cycles between the GDP-bound inactive and GTP-bound active forms, and this change in activity is associated with the trafficking cycle of synaptic vesicles at nerve terminals. Rab3 GTPase-activating protein (GAP) stimulates the GTPase activity of Rab3A and is expected to determine the timing of the dissociation of Rab3A from synaptic vesicles, which may be coupled with synaptic vesicle exocytosis. Rab3 GAP consists of two subunits: the catalytic subunit p130 and the noncatalytic subunit p150. Recently, mutations in p130 were found to cause Warburg Micro syndrome with severe mental retardation. Here, we generated p130-deficient mice and found that the GTP-bound form of Rab3A accumulated in the brain. Loss of p130 in mice resulted in inhibition of Ca(2+)-dependent glutamate release from cerebrocortical synaptosomes and altered short-term plasticity in the hippocampal CA1 region. Thus, Rab3 GAP regulates synaptic transmission and plasticity by limiting the amount of the GTP-bound form of Rab3A

    Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis

    No full text
    Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABA(A) receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5α-reductase (5α-R) type I and 3α-hydroxysteroid dehydrogenase (3α-HSD). This study evaluates 5α-R type I and 3α-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100β immunohistochemistry. We demonstrate that 5α-R type I and 3α-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5α-R type I nor 3α-HSD mRNAs are expressed in S100β- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5α-R type I and 3α-HSD in cortical and hippocampal GABAergic interneurons. However, 5α-R type I and 3α-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABA(A) receptors, either with an autocrine or a paracrine mechanism or by reaching GABA(A) receptor intracellular sites through lateral membrane diffusion
    corecore