260 research outputs found

    Cigarette Smoke Induces Intestinal Inflammation via a Th17 Cell-Neutrophil Axis

    Get PDF
    Epidemiological evidence finds cigarette smoking is a common risk factor for a number of diseases, not only in the lung but also in other tissues, such as the gastrointestinal tract. While it is well-documented that smoking directly drives lung inflammatory disease, how it promotes disease in peripheral tissues is incompletely understood. In this study, we utilized a mouse model of short-term smoke exposure and found increased Th17 cells and neutrophilia in the lung as well as in the circulation. Following intestinal inflammatory challenge, smoke exposed mice showed increased pathology which corresponds to enhanced intestinal Th17 cells, ILC3 and neutrophils within intestinal tissue. Using cellular depletion and genetic deficiencies, we define a cellular loop by which IL-17A and downstream neutrophils drive cigarette smoke-enhanced intestinal inflammation. Collectively, cigarette smoke induced local lung Th17 responses lead to increased systemic susceptibility to inflammatory insult through enhanced circulating neutrophils. These data demonstrate a cellular pathway by which inflammatory challenge in the lung can sensitize the intestine to enhanced pathological innate and adaptive immune responses

    Assessing the feasibility of impregnating phase change materials in lightweight aggregate for development of thermal energy storage systems

    Get PDF
    This paper assesses the feasibility of impregnation/encasement of phase change materials (PCMs) in lightweight aggregates (LWAs). An impregnation process was adopted to carry out the encasement study of two different PCMs in four different LWAs. The leakage of the impregnated/encased PCMs was studied when they were submitted to freeze/thawing and oven drying tests, separately. The results confirmed that, the impregnation/encasement method is effective with respect to the large thermal energy storage density, and can be suitable for applications were PCMs cannot be incorporated directly such as asphalt road pavements.The authors acknowledge the funding given by Centre for Coordination and Regional Development Committee (CCDR-C) through the research project CENTRO-07-ST24_FEDER-002020 "Environmentally-Friendly Aeronautical Transport Systems Integrated Program (EFATRAS)", http://efatrasubi.wordpress.com. Supply of Expanded Clay materials by ARGEX - Argila Expandida, S.A and Cork materials by Sofalca - Sociedade Central de Productos de Cortica, Lda are also acknowledged

    Rare deleterious germline variants and risk of lung cancer

    Get PDF
    Recent studies suggest that rare variants exhibit stronger effect sizes and might play a crucial role in the etiology of lung cancers (LC). Whole exome plus targeted sequencing of germline DNA was performed on 1045 LC cases and 885 controls in the discovery set. To unveil the inherited causal variants, we focused on rare and predicted deleterious variants and small indels enriched in cases or controls. Promising candidates were further validated in a series of 26,803 LCs and 555,107 controls. During discovery, we identified 25 rare deleterious variants associated with LC susceptibility, including 13 reported in ClinVar. Of the five validated candidates, we discovered two pathogenic variants in known LC susceptibility loci, ATM p.V2716A (Odds Ratio [OR] 19.55, 95%CI 5.04–75.6) and MPZL2 p.I24M frameshift deletion (OR 3.88, 95%CI 1.71–8.8); and three in novel LC susceptibility genes, POMC c.*28delT at 3′ UTR (OR 4.33, 95%CI 2.03–9.24), STAU2 p.N364M frameshift deletion (OR 4.48, 95%CI 1.73–11.55), and MLNR p.Q334V frameshift deletion (OR 2.69, 95%CI 1.33–5.43). The potential cancer-promoting role of selected candidate genes and variants was further supported by endogenous DNA damage assays. Our analyses led to the identification of new rare deleterious variants with LC susceptibility. However, in-depth mechanistic studies are still needed to evaluate the pathogenic effects of these specific alleles

    Focused Analysis of Exome Sequencing Data for Rare Germline Mutations in Familial and Sporadic Lung Cancer

    Get PDF
    AbstractIntroductionThe association between smoking-induced chronic obstructive pulmonary disease (COPD) and lung cancer (LC) is well documented. Recent genome-wide association studies (GWAS) have identified 28 susceptibility loci for LC, 10 for COPD, 32 for smoking behavior, and 63 for pulmonary function, totaling 107 nonoverlapping loci. Given that common variants have been found to be associated with LC in genome-wide association studies, exome sequencing of these high-priority regions has great potential to identify novel rare causal variants.MethodsTo search for disease-causing rare germline mutations, we used a variation of the extreme phenotype approach to select 48 patients with sporadic LC who reported histories of heavy smoking—37 of whom also exhibited carefully documented severe COPD (in whom smoking is considered the overwhelming determinant)—and 54 unique familial LC cases from families with at least three first-degree relatives with LC (who are likely enriched for genomic effects).ResultsBy focusing on exome profiles of the 107 target loci, we identified two key rare mutations. A heterozygous p.Arg696Cys variant in the coiled-coil domain containing 147 (CCDC147) gene at 10q25.1 was identified in one sporadic and two familial cases. The minor allele frequency (MAF) of this variant in the 1000 Genomes database is 0.0026. The p.Val26Met variant in the dopamine β-hydroxylase (DBH) gene at 9q34.2 was identified in two sporadic cases; the minor allele frequency of this mutation is 0.0034 according to the 1000 Genomes database. We also observed three suggestive rare mutations on 15q25.1: iron-responsive element binding protein neuronal 2 (IREB2); cholinergic receptor, nicotinic, alpha 5 (neuronal) (CHRNA5); and cholinergic receptor, nicotinic, beta 4 (CHRNB4).ConclusionsOur results demonstrated highly disruptive risk-conferring CCDC147 and DBH mutations

    The data set development for the National Spinal Cord Injury Registry of Iran (NSCIR-IR): progress toward improving the quality of care

    Get PDF
    STUDY DESIGN: Descriptive study. OBJECTIVES: The aim of this manuscript is to describe the development process of the data set for the National Spinal Cord Injury Registry of Iran (NSCIR-IR). SETTING: SCI community in Iran. METHODS: The NSCIR-IR data set was developed in 8 months, from March 2015 to October 2015. An expert panel of 14 members was formed. After a review of data sets of similar registries in developed countries, the selection and modification of the basic framework were performed over 16 meetings, based on the objectives and feasibility of the registry. RESULTS: The final version of the data set was composed of 376 data elements including sociodemographic, hospital admission, injury incidence, prehospital procedures, emergency department visit, medical history, vertebral injury, spinal cord injury details, interventions, complications, and discharge data. It also includes 163 components of the International Standards for the Neurologic Classification of Spinal Cord Injury (ISNCSCI) and 65 data elements related to quality of life, pressure ulcers, pain, and spasticity. CONCLUSION: The NSCIR-IR data set was developed in order to meet the quality improvement objectives of the registry. The process was centered around choosing the data elements assessing care provided to individuals in the acute and chronic phases of SCI in hospital settings. The International Spinal Cord Injury Data Set was selected as a basic framework, helped by comparison with data from other countries. Expert panel modifications facilitated the implementation of the registry process with the current clinical workflow in hospitals

    Candida soluble cell wall β-glucan facilitates ovalbumin-induced allergic airway inflammation in mice: Possible role of antigen-presenting cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although fungi have been implicated as initiating/deteriorating factors for allergic asthma, their contributing components have not been fully elucidated. We previously isolated soluble β-glucan from <it>Candida albicans </it>(CSBG) (Ohno et al., 2007). In the present study, the effects of CSBG exposure on airway immunopathology in the presence or absence of other immunogenic allergen was investigated <it>in vivo</it>, and their cellular mechanisms were analyzed both <it>in vivo </it>and <it>in vitro</it>.</p> <p>Methods</p> <p><it>In vivo</it>, ICR mice were divided into 4 experimental groups: vehicle, CSBG (25 μg/animal), ovalbumin (OVA: 2 μg/animal), and CSBG + OVA were repeatedly administered intratracheally. The bronchoalveolar lavage cellular profile, lung histology, levels of cytokines and chemokines in the lung homogenates, the expression pattern of antigen-presenting cell (APC)-related molecules in the lung digests, and serum immunoglobulin values were studied. <it>In vitro</it>, the impacts of CSBG (0–12.5 μg/ml) on the phenotype and function of immune cells such as splenocytes and bone marrow-derived dendritic cells (BMDCs) were evaluated in terms of cell proliferation, the surface expression of APC-related molecules, and OVA-mediated T-cell proliferating activity.</p> <p>Results</p> <p><it>In vivo</it>, repeated pulmonary exposure to CSBG induced neutrophilic airway inflammation in the absence of OVA, and markedly exacerbated OVA-related eosinophilic airway inflammation with mucus metaplasia in mice, which was concomitant with the amplified lung expression of Th2 cytokines and IL-17A and chemokines related to allergic response. Exposure to CSBG plus OVA increased the number of cells bearing MHC class II with or without CD80 in the lung compared to that of others. <it>In vitro</it>, CSBG significantly augmented splenocyte proliferation in the presence or absence of OVA. Further, CSBG increased the expression of APC-related molecules such as CD80, CD86, and DEC205 on BMDCs and amplified OVA-mediated T-cell proliferation through BMDCs.</p> <p>Conclusion</p> <p>CSBG potentiates allergic airway inflammation with maladaptive Th immunity, and this potentiation was associated with the enhanced activation of APCs including DC.</p

    An Immune Basis for Lung Parenchymal Destruction in Chronic Obstructive Pulmonary Disease and Emphysema

    Get PDF
    BACKGROUND: Chronic obstructive pulmonary disease and emphysema are a frequent result of long-term smoking, but the exact mechanisms, specifically which types of cells are associated with the lung destruction, are unclear. METHODS AND FINDINGS: We studied different subsets of lymphocytes taken from portions of human lungs removed surgically to find out which lymphocytes were the most frequent, which cell-surface markers these lymphocytes expressed, and whether the lymphocytes secreted any specific factors that could be associated with disease. We found that loss of lung function in patients with chronic obstructive pulmonary disease and emphysema was associated with a high percentage of CD4(+) and CD8(+) T lymphocytes that expressed chemokine receptors CCR5 and CXCR3 (both markers of T helper 1 cells), but not CCR3 or CCR4 (markers of T helper 2 cells). Lung lymphocytes in patients with chronic obstructive pulmonary disease and emphysema secrete more interferon gamma—often associated with T helper 1 cells—and interferon-inducible protein 10 and monokine induced by interferon, both of which bind to CXCR3 and are involved in attracting T helper 1 cells. In response to interferon-inducible protein 10 and monokine induced by interferon, but not interferon gamma, lung macrophages secreted macrophage metalloelastase (matrix metalloproteinase-12), a potent elastin-degrading enzyme that causes tissue destruction and which has been linked to emphysema. CONCLUSIONS: These data suggest that Th1 lymphoctytes in the lungs of people with smoking-related damage drive progression of emphysema through CXCR3 ligands, interferon-inducible protein 10, and monokine induced by interferon
    corecore