240 research outputs found

    Deep defects in Cu2ZnSnS4 monograin solar cells

    Get PDF
    AbstractIn this report Cu2ZnSnS4 (CZTS) monograin layer (MGL) solar cells were studied using admittance spectroscopy (AS) (frequency range 20Hz-10MHz) and temperature dependence of quantum efficiency (QE) curves (T=10K-300K). These studies revealed two deep defect states at EA1= 120 meV and at EA2= 167 meV. The first state was present in different CZTS cells while the second state had somewhat different properties in different cells. The temperature dependence of QE curves showed a shift of the long wavelength edge with increasing temperature by about 110 meV towards higher energy. The possible origin of the observed deep defect states is discussed

    Discerning Aggregation in Homogeneous Ensembles: A General Description of Photon Counting Spectroscopy in Diffusing Systems

    Full text link
    In order to discern aggregation in solutions, we present a quantum mechanical analog of the photon statistics from fluorescent molecules diffusing through a focused beam. A generating functional is developed to fully describe the experimental physical system as well as the statistics. Histograms of the measured time delay between photon counts are fit by an analytical solution describing the static as well as diffusing regimes. To determine empirical fitting parameters, fluorescence correlation spectroscopy is used in parallel to the photon counting. For expedient analysis, we find that the distribution's deviation from a single Poisson shows a difference between two single fluor moments or a double fluor aggregate of the same total intensities. Initial studies were performed on fixed-state aggregates limited to dimerization. However preliminary results on reactive species suggest that the method can be used to characterize any aggregating system.Comment: 30 pages, 5 figure

    Fatty oil accumulation in vegetable soybean seeds and its thin-layer chromatography

    Get PDF
    Received: February 23rd, 2021 ; Accepted: May 5th, 2021 ; Published: May 20th, 2021 ; Correspondence: [email protected] paper studies the accumulation of crude oil (triacylglycerides, monoacylglycerides, diacylglycerides, free fatty acids, phospholipids, tocopherols, pigments, sterols, waxes) in soybean vegetable samples. Samples were taken from two groups: grown in an experimental field and in protected ground of the Federal Scientific Center for Vegetable Growing in the Moscow Region. Both groups were observed in the phase of technical ripeness and in the phase of complete biological ripeness (finally ripe seeds). Soxhlet method as arbitration in analysis was used as suitable for the extraction of lipophilic substances. It was determined that the fat content in the technical ripeness phase in most soybean samples averaged 10.5%. In the phase of biological ripeness, the highest accumulation of fatty oil was observed in Hidaka and Nordic (17.6%). The oil content in vegetable forms of soybeans was consistently lower than that of grain varieties: in the phases of technical and biological ripeness by 55.6% and 22.0% (in relative values) respectively. Thus, he accumulation of oil in seeds is determined mainly genetically. The refractive index of vegetable and oil soybean was established equal on average 1.4755. According to this finding the soybean oil can be classified as semi-drying. Thin layer chromatography (TLC) was used to study the lipophilic components of soybean fatty oil. It was found experimentally that the best separation of the components is achieved using an eluent system: carbon tetrachloride: chloroform in a 2: 3 ratio. It was found that the main fatsoluble compounds are the following (in order of increasing Rf in the chromatogram): phospholipids, monoacylglycerides, triacylglycerides, tocopherols, fatty acid esters. As a finding of the research vegetable soybean cultivated at 55 °N in both technical and biological ripeness phases significantly accumulate crude oil in the seeds. This crude oil contained ω-6, ω-3, phospholipids, and vitamin E

    Measuring, in solution, multiple-fluorophore labeling by combining Fluorescence Correlation Spectroscopy and photobleaching

    Get PDF
    Determining the number of fluorescent entities that are coupled to a given molecule (DNA, protein, etc.) is a key point of numerous biological studies, especially those based on a single molecule approach. Reliable methods are important, in this context, not only to characterize the labeling process, but also to quantify interactions, for instance within molecular complexes. We combined Fluorescence Correlation Spectroscopy (FCS) and photobleaching experiments to measure the effective number of molecules and the molecular brightness as a function of the total fluorescence count rate on solutions of cDNA (containing a few percent of C bases labeled with Alexa Fluor 647). Here, photobleaching is used as a control parameter to vary the experimental outputs (brightness and number of molecules). Assuming a Poissonian distribution of the number of fluorescent labels per cDNA, the FCS-photobleaching data could be easily fit to yield the mean number of fluorescent labels per cDNA strand (@ 2). This number could not be determined solely on the basis of the cDNA brightness, because of both the statistical distribution of the number of fluorescent labels and their unknown brightness when incorporated in cDNA. The statistical distribution of the number of fluorophores labeling cDNA was confirmed by analyzing the photon count distribution (with the cumulant method), which showed clearly that the brightness of cDNA strands varies from one molecule to the other.Comment: 38 pages (avec les figures

    Resolving fluorescent species by their brightness and diffusion using correlated photon-counting histograms

    Get PDF
    Fluorescence fluctuation spectroscopy (FFS) refers to techniques that analyze fluctuations in the fluorescence emitted by fluorophores diffusing in a small volume and can be used to distinguish between populations of molecules that exhibit differences in brightness or diffusion. For example, fluorescence correlation spectroscopy (FCS) resolves species through their diffusion by analyzing correlations in the fluorescence over time; photon counting histograms (PCH) and related methods based on moment analysis resolve species through their brightness by analyzing fluctuations in the photon counts. Here we introduce correlated photon counting histograms (cPCH), which uses both types of information to simultaneously resolve fluorescent species by their brightness and diffusion. We define the cPCH distribution by the probability to detect both a particular number of photons at the current time and another number at a later time. FCS and moment analysis are special cases of the moments of the cPCH distribution, and PCH is obtained by summing over the photon counts in either channel. cPCH is inherently a dual channel technique, and the expressions we develop apply to the dual colour case. Using simulations, we demonstrate that two species differing in both their diffusion and brightness can be better resolved with cPCH than with either FCS or PCH. Further, we show that cPCH can be extended both to longer dwell times to improve the signal-to-noise and to the analysis of images. By better exploiting the information available in fluorescence fluctuation spectroscopy, cPCH will be an enabling methodology for quantitative biology

    Effect of yeast culture on milk production and metabolic and reproductive performance of early lactation dairy cows

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to estimate the effect of supplementation with <it>Saccaromyces cerevisiae (SC</it>) (Yea-Sacc<sup>® </sup>1026) on milk production, metabolic parameters and the resumption of ovarian activity in early lactation dairy cows.</p> <p>Methods</p> <p>The experiment was conducted during 2005/2006 in a commercial tied-house farm with an average of 200 milking Estonian Holstein Friesian cows. The late pregnant multiparous cows (n = 46) were randomly divided into two groups; one group received 10 g yeast culture from two weeks before to 14 weeks after calving. The groups were fed a total mixed ration with silages and concentrates. Milk recording data and blood samples for plasma metabolites were taken. Resumption of luteal activity was determined using milk progesterone (P<sub>4</sub>) measurements. Uterine bacteriology and ovarian ultrasonography (US) were performed and body condition scores (BCS) and clinical disease occurrences were recorded. For analysis, the statistical software Stata 9.2 and R were used to compute Cox proportional hazard and linear mixed models.</p> <p>Results</p> <p>The average milk production per cow did not differ between the groups (32.7 ± 6.4 vs 30.7 ± 5.3 kg/day in the SC and control groups respectively), but the production of milk fat (<it>P </it>< 0.001) and milk protein (<it>P </it>< 0.001) were higher in the SC group. There was no effect of treatment on BCS. The analysis of energy-related metabolites in early lactation showed no significant differences between the groups. In both groups higher levels of β-hydroxybutyrate (BHB) appeared from days 14 to 28 after parturition and the concentration of non-esterfied fatty acid (NEFA) was higher from days 1–7 post partum (PP). According to US and P<sub>4 </sub>results, all cows in both groups ovulated during the experimental period. The resumption of ovarian activity (first ovulations) and time required for elimination of bacteria from the uterus did not differ between the groups.</p> <p>Conclusion</p> <p>Supplementation with SC had an effect on milk protein and fat production, but did not influence the milk yield. No effects on PP metabolic status, bacterial elimination from the uterus nor the resumption of ovarian activity were found.</p

    Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization

    Get PDF
    Dry-coated microprojections can deliver vaccine to abundant antigen-presenting cells in the skin and induce efficient immune responses and the dry-coated vaccines are expected to be thermostable at elevated temperatures. In this paper, we show that we have dramatically improved our previously reported gas-jet drying coating method and greatly increased the delivery efficiency of coating from patch to skin to from 6.5% to 32.5%, by both varying the coating parameters and removing the patch edge. Combined with our previous dose sparing report of influenza vaccine delivery in a mouse model, the results show that we now achieve equivalent protective immune responses as intramuscular injection (with the needle and syringe), but with only 1/30th of the actual dose. We also show that influenza vaccine coated microprojection patches are stable for at least 6 months at 23 degrees C. inducing comparable immunogenicity with freshly coated patches. The dry-coated microprojection patches thus have key and unique attributes in ultimately meeting the medical need in certain low-resource regions with low vaccine affordability and difficulty in maintaining "cold-chain" for vaccine storage and transport. (C) 2011 Elsevier B.V. All rights reserved
    corecore