156 research outputs found

    Body Wall Force Sensor for Simulated Minimally Invasive Surgery: Application to Fetal Surgery

    Get PDF
    Surgical interventions are increasingly executed minimal invasively. Surgeons insert instruments through tiny incisions in the body and pivot slender instruments to treat organs or tissue below the surface. While a blessing for patients, surgeons need to pay extra attention to overcome the fulcrum effect, reduced haptic feedback and deal with lost hand-eye coordination. The mental load makes it difficult to pay sufficient attention to the forces that are exerted on the body wall. In delicate procedures such as fetal surgery, this might be problematic as irreparable damage could cause premature delivery. As a first attempt to quantify the interaction forces applied on the patient's body wall, a novel 6 degrees of freedom force sensor was developed for an ex-vivo set up. The performance of the sensor was characterised. User experiments were conducted by 3 clinicians on a set up simulating a fetal surgical intervention. During these simulated interventions, the interaction forces were recorded and analysed when a normal instrument was employed. These results were compared with a session where a flexible instrument under haptic guidance was used. The conducted experiments resulted in interesting insights in the interaction forces and stresses that develop during such difficult surgical intervention. The results also implicated that haptic guidance schemes and the use of flexible instruments rather than rigid ones could have a significant impact on the stresses that occur at the body wall

    Haptic Guidance in Comanipulated Laser Surgery for Fetal Disorders

    Get PDF
    The current techniques in minimal invasive surgery allow to treat fetal disorders. In fetal interventions very precise instrument manipulation is required from the surgeon. For instance in the treatment of the twin-to-twin transfusion syndrome (TTTS) it is crucial that the surgeon maintains a specific distance between the tip of the employed instrument and the placenta, while lasering target sites on the placenta. To facilitate this procedure, we suggest a new approach where the surgeon comanipulates the instruments together with a robotic stabilizer arm. The stabilizer arm provides haptic guidance to the surgeon, augmenting the surgeon's dexterity and precision. The first results show that this approach is promising

    A new model for root growth in soil with macropores

    Get PDF
    Abstract: Background and aimsThe use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil. Methods: In our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement. Results: The model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated. Conclusions: Qualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one

    Learning curves of open and endoscopic fetal spina bifida closure: a systematic review and meta-analysis

    Get PDF
    OBJECTIVES: The Management Of Myelomeningocele Study (MOMS) trial demonstrated the safety and efficacy of open fetal surgery for spina bifida (SB). Recently developed alternative techniques may reduce maternal risks yet should do without compromising on fetal neuroprotective effects. We aimed to assess the learning curve of different fetal SB closure techniques. METHODS: We searched Medline, Web of Science, Embase, Scopus and Cochrane databases and the grey literature to identify relevant articles without language restriction from January 1980 until October 2018. We systematically reviewed and selected studies reporting all consecutive procedures and with a postnatal follow-up ≥12 months. They also had to report outcome variables necessary to measure the learning curve defined by fetal safety and efficacy. Two independent authors retrieved the data, assessed the quality of the studies and categorized observations into blocks of 30 patients. For meta-analysis, data were pooled using a random-effect model when heterogeneous. To measure the learning curve, we used two complementary methods. With the group splitting method, competency was defined when the procedure provided comparable results to the MOMS trial for 12 outcome variables representative for (1) the immediate surgical outcome, (2) short-term neonatal neuroprotection and (3) long-term neuroprotection at ≥12 months. Then, when the patients' raw data were available, we performed cumulative sum (CUSUM) analysis based on a composite binary outcome defining a successful surgery. It combined four clinically relevant variables for safety (fetal death within 7 days) and for efficacy (neuroprotection at birth). RESULTS: We included 17/6024 (0.3%) studies with low and moderate risks of bias. Fetal SB closure was performed via standard-hysterotomy (n=11), mini-hysterotomy (n=1) or fetoscopy [exteriorized-uterus single-layer (n=1), percutaneous single-layer (n=3) or percutaneous two-layer closure (n=1)]. Only outcomes for the standard-hysterotomy could be meta-analyzed. Overall, outcomes significantly improved with experience. Competency was reached after 35 consecutive cases for standard-hysterotomy and was predicted to be achieved after ≥57 cases for mini-hysterotomy and ≥56 for percutaneous two-layer fetoscopy. For percutaneous and uterus-exteriorized single-layer fetoscopy, competency was not respectively reached by cases 81 and 28 available for analysis. CONCLUSIONS: The number of cases operated correlates with the outcome of SB fetal closure and ranges from 35 cases for standard-hysterotomy to ≥56-57 cases for minimally invasive modifications. Our observations provide important information for institutions eager to establish a new fetal center, develop a new technique or train their team, and inform referring clinicians, potential patients and third-parties

    Haptic Guidance Based on All-Optical Ultrasound Distance Sensing for Safer Minimally Invasive Fetal Surgery

    Get PDF
    By intervening during the early stage of gestation, fetal surgeons aim to correct or minimize the effects of congenital disorders. As compared to postnatal treatment of these disorders, such early interventions can often actually save the life of the fetus and also improve the quality of life of the newborn. However, fetal surgery is considered one of the most challenging disciplines within Minimally Invasive Surgery (MIS), owing to factors such as the fragility of the anatomic features, poor visibility, limited manoeuvrability, and extreme requirements in terms of instrument handling with precise positioning. This work is centered on a fetal laser surgery procedure treating placental disorders. It proposes the use of haptic guidance to enhance the overall safety of this procedure and to simplify instrument handling. A method is described that provides effective guidance by installing a forbidden region virtual fixture over the placenta, thereby safeguarding adequate clearance between the instrument tip and the placenta. With a novel application of all-optical ultrasound distance sensing in which transmission and reception are performed with fibre optics, this method can be used with a sole reliance on intraoperatively acquired data. The added value of the guidance approach, in terms of safety and performance, is demonstrated in a series of experiments with a robotic platform
    • …
    corecore