1,618 research outputs found

    The census of complex organic molecules in the solar type protostar IRAS16293-2422

    Full text link
    Complex Organic Molecules (COMs) are considered crucial molecules, since they are connected with organic chemistry, at the basis of the terrestrial life. More pragmatically, they are molecules in principle difficult to synthetize in the harsh interstellar environments and, therefore, a crucial test for astrochemical models. Current models assume that several COMs are synthesised on the lukewarm grain surfaces (\gtrsim30-40 K), and released in the gas phase at dust temperatures \gtrsim100 K. However, recent detections of COMs in \lesssim20 K gas demonstrate that we still need important pieces to complete the puzzle of the COMs formation. We present here a complete census of the oxygen and nitrogen bearing COMs, previously detected in different ISM regions, towards the solar type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Six COMs, out of the 29 searched for, were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. The multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (\lesssim30 K) envelope of IRAS16293-2422, with abundances 0.03-2 ×1010\times 10^{-10}. Our data do not allow to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on the lukewarm grain surfaces. Finally, when considering also other ISM sources, we find a strong correlation over five orders of magnitude, between the methyl formate and dimethyl ether and methyl formate and formamide abundances, which may point to a link between these two couples of species, in cold and warm gas

    Tutorial on LTE/LTE-A Cellular Network Dimensioning Using Iterative Statistical Analysis

    Get PDF
    LTE is the fastest growing cellular technology and is expected to increase its footprint in the coming years, as well as progress toward LTE-A. The race among operators to deliver the expected quality of experience to their users is tight and demands sophisticated skills in network planning. Radio network dimensioning (RND) is an essential step in the process of network planning and has been used as a fast, but indicative, approximation of radio site count. RND is a prerequisite to the lengthy process of thorough planning. Moreover, results from RND are used by players in the industry to estimate preplanning costs of deploying and running a network; thus, RND is, as well, a key tool in cellular business modelling. In this work, we present a tutorial on radio network dimensioning, focused on LTE/LTE-A, using an iterative approach to find a balanced design that mediates among the three design requirements: coverage, capacity, and quality. This approach uses a statistical link budget analysis methodology, which jointly accounts for small and large scale fading in the channel, as well as loading due to traffic demand, in the interference calculation. A complete RND manual is thus presented, which is of key importance to operators deploying or upgrading LTE/LTE-A networks for two reasons. It is purely analytical, hence it enables fast results, a prime factor in the race undertaken. Moreover, it captures essential variables affecting network dimensions and manages conflicting targets to ensure user quality of experience, another major criterion in the competition. The described approach is compared to the traditional RND using a commercial LTE network planning tool. The outcome further dismisses the traditional RND for LTE due to unjustified increase in number of radio sites and related cost, and motivates further research in developing more effective and novel RND procedures

    Shedding light on the formation of the pre-biotic molecule formamide with ASAI

    Get PDF
    Formamide (NH2CHO) has been proposed as a pre-biotic precursor with a key role in the emergence of life on Earth. While this molecule has been observed in space, most of its detections correspond to high-mass star-forming regions. Motivated by this lack of investigation in the low-mass regime, we searched for formamide, as well as isocyanic acid (HNCO), in 10 low- and intermediate-mass pre-stellar and protostellar objects. The present work is part of the IRAM Large Programme ASAI (Astrochemical Surveys At IRAM), which makes use of unbiased broadband spectral surveys at millimetre wavelengths. We detected HNCO in all the sources and NH2CHO in five of them. We derived their abundances and analysed them together with those reported in the literature for high-mass sources. For those sources with formamide detection, we found a tight and almost linear correlation between HNCO and NH2CHO abundances, with their ratio being roughly constant -between 3 and 10- across 6 orders of magnitude in luminosity. This suggests the two species are chemically related. The sources without formamide detection, which are also the coldest and devoid of hot corinos, fall well off the correlation, displaying a much larger amount of HNCO relative to NH2CHO. Our results suggest that, while HNCO can be formed in the gas phase during the cold stages of star formation, NH2CHO forms most efficiently on the mantles of dust grains at these temperatures, where it remains frozen until the temperature rises enough to sublimate the icy grain mantles. We propose hydrogenation of HNCO as a likely formation route leading to NH2CHO.Comment: 26 pages, 9 figures. Accepted by Monthly Notices of the Royal Astronomical Societ

    ‘Not the same person anymore’: groupwork, identity and social learning online

    Get PDF
    This paper argues that identity may be key to understanding why social presence has been considered so important to successful learning experiences. A qualitative case study of 10 students and 4 tutors in an online postgraduate education program was conducted. The research applied the work of Goffman to explain the relationship between social presence and support for the social production of identity online. Semi-structured individual and group interviews revealed the importance of trustworthy social interaction to support students’ performance of identity and identity shifts in fostering deeper social learning. Implications for the design of effective online learning experiences are provided

    COVID-19 Vaccine Acceptance among Ajman Undergraduate Dental Students: A Cross-Sectional Study.

    Get PDF
    BACKGROUND Achieving widespread coronavirus disease 2019 (COVID-19) vaccination is crucial in controlling the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This cross-sectional study aimed to identify factors associated with the willingness of dental medicine students to receive the COVID-19 vaccine. OBJECTIVES The study sought to assess the knowledge, attitudes, and behaviors of undergraduate dental students toward COVID-19 vaccines and to identify determinants, motivators, and barriers to vaccine uptake and booster receipt. METHODS A web-based survey was distributed to all 882 undergraduate dental surgery students in January 2022, and 70.7% of the students responded. The survey used χ2 tests and logistic regression analysis to examine the association among the variables. The significance level was set at α = 0.05. RESULTS Most participants (72.4%) reported having adequate knowledge of COVID-19. The vaccine acceptance rate was higher among male and older trainees, with no significant difference compared to women and younger trainees with no significant difference (p = 0.849). Acceptance of the vaccine varied according to study level (5-year program), ranging from 44.8% to 73.0%, in the following order 4th > 1st > 3rd > 5th > 2nd year. Social media (76.8%), government websites (66.5%), and family and friends (57.2%) were the main sources of COVID-19-related information. Among hesitant and unwilling participants, the main concerns were side effects (34.0%) and lack of understanding about the vaccine's mechanism (67.3%). CONCLUSIONS Ajman dental students had moderate knowledge of COVID-19 and obtained information mainly from social media, government websites, and family and friends. Age, sex, and study year influenced vaccine acceptance. The main reasons for refusal were lack of knowledge, fear of side effects, and complications. Education campaigns are needed to increase vaccine acceptance among dental students

    Matrix for specific detection of alkaloids by MALDI-​TOF mass spectrometry

    Get PDF
    The présent invention relates to a novel bithiophenic matrix for spécifie détection of alkaloids by MALDI-TOF mass spectrometr

    Standardized approach to extract candidate outcomes from literature for a standard outcome set:a case- and simulation study

    Get PDF
    Aims: Standard outcome sets enable the value-based evaluation of health care delivery. Whereas the attainment of expert opinion has been structured using methods such as the modified-Delphi process, standardized guidelines for extraction of candidate outcomes from literature are lacking. As such, we aimed to describe an approach to obtain a comprehensive list of candidate outcomes for potential inclusion in standard outcome sets. Methods: This study describes an iterative saturation approach, using randomly selected batches from a systematic literature search to develop a long list of candidate outcomes to evaluate healthcare. This approach can be preceded with an optional benchmark review of relevant registries and Clinical Practice Guidelines and data visualization techniques (e.g. as a WordCloud) to potentially decrease the number of iterations. The development of the International Consortium of Health Outcome Measures Heart valve disease set is used to illustrate the approach. Batch cutoff choices of the iterative saturation approach were validated using data of 1000 simulated cases. Results: Simulation showed that on average 98% (range 92–100%) saturation is reached using a 100-article batch initially, with 25 articles in the subsequent batches. On average 4.7 repeating rounds (range 1–9) of 25 new articles were necessary to achieve saturation if no outcomes are first identified from a benchmark review or a data visualization. Conclusion: In this paper a standardized approach is proposed to identify relevant candidate outcomes for a standard outcome set. This approach creates a balance between comprehensiveness and feasibility in conducting literature reviews for the identification of candidate outcomes.</p

    Friction of flat and micropatterned interfaces with nanoscale roughness

    Get PDF
    The dry friction of surfaces with nanoscale roughness and the possibility of using micropatterning to tailor friction by manipulating contact area is investigated. Square wave patterns produced on samples from silicon wafers (and their unstructured equivalent) were slid against unstructured silicon counter surfaces. The width of the square wave features was adjusted to vary the apparent feature contact area. The existence of nanoscale roughness was sufficient to ensure Amontons’ first law (F = μP) on both structured &amp; unstructured samples. Somewhat counterintuitively, friction was independent of the apparent feature contact area making it difficult to tailor friction via the feature contact area. This occurred because, even though the apparent feature contact area was adjusted, the surface roughness and nominal flatness at the contact interface was preserved ensuring that the real contact area and thereby the friction, were likewise preserved. This is an interesting special case, but not universally applicable: friction can indeed be adjusted by structuring provided the intervention leads to a change in real contact area (or interlocking)– and this depends on the specific surface geometry and topography

    Effect of different cooling strategies on surface quality and power consumption in finishing end milling of stainless steel 316

    Get PDF
    In this paper, an experimental investigation into the machinability of AISI 316 alloy during finishing end milling operation under different cooling conditions and with varying process parameters is presented. Three environmental-friendly cooling strategies were utilized, namely, dry, minimal quantity lubrication (MQL) and MQL with nanoparticles (Al2_{2}O3_{3}),and the variable process parameters were cutting speed and feed rate. Power consumption and surface quality were utilized as the machining responses to characterize the process performance. Surface quality was examined by evaluating the final surface roughness and surface integrity of the machined surface. The results revealed a reduction in power consumption when MQL and MQL + Al2_{2}O3_{3} strategies were applied compared to the dry case by averages of 4.7% and 8.6%, respectively. Besides, a considerable reduction in the surface roughness was noticed with average values of 40% and 44% for MQL and MQL + Al2_{2}O3_{3} strategies, respectively, when compared to the dry condition. At the same time, the reduction in generated surface roughness obtained by using MQL + Al2_{2}O3_{3}condition was marginal (5.9%) compared with using MQL condition. Moreover, the results showed that the improvement obtained in the surface quality when using MQL and MQL + Al2_{2}O3_{3} coolants increased at higher cutting speed and feed rate, and thus, higher productivity can be achieved without deteriorating final surface quality, compared to dry conditions. From scanning electron microscope (SEM) analysis, debris, furrows, plastic deformation irregular friction marks, and bores were found in the surface texture when machining under dry conditions. A slight smoother surface with a nano-polishing effect was found in the case of MQL + Al2_{2}O3_{3} compared to the MQL and dry cooling strategies. This proves the effectiveness of lubricant with nanoparticles in reducing the friction and thermal damages on the machined surface as the friction marks were still observed when machining with MQL comparable with the case of MQL + Al2_{2}O3_{3}
    corecore