981 research outputs found

    Self-rolling up micro assembly using temperature-responsive hydrogel sheet with rigid plate array

    Get PDF
    We propose a design method of a micro self-rolling up structure using a temperature-responsive hydrogel sheet with rigid plate array. Our self-rolling up is a method for developing a micro three-dimensional (3D) structure performed by rolling up a two-dimensional (2D) flat sheet, like making a croissant, through a continuous self-folding. The local curvature of the self-rolled up structure could be controlled by the length of rigid plates. By controlling the local curvature, we designed and developed self-rolled up structures with or without gaps between the self-rolled up layers, such as cylindrical and croissant-like ellipsoidal structures. In addition, all the structures demonstrated repetitive deformation of forward and backward rolling up by changing a temperature of water

    Hole dynamics and photoemission in a t-J model for SrCu_2(BO_3)_2

    Full text link
    The motion of a single hole in a t-J model for the two-dimensional spin-gap compound SrCu_2(BO_3)_2 is investigated. The undoped Heisenberg model for this system has an exact dimer eigenstate and shows a phase transition between a dimerized and a Neel phase at a certain ratio of the magnetic couplings. We calculate the photoemission spectrum in the disordered phase using a generalized spin-polaron picture. By varying the inter-dimer hopping parameters we find a cross-over between a narrow quasiparticle band regime known from other strongly correlated systems and free-fermion behavior. The hole motion in the Neel-ordered phase is also briefly considered.Comment: 4 pages, 3 fig

    The Association Between Social Networks and Self-rated risk of HIV Infection among Secondary School Students in Moshi Municipality, Tanzania.

    Get PDF
    Abstract This study describes the social networks of secondary school students in Moshi Municipality, and their association with self-rated risk of human immunodeficiency virus (HIV) infection. A cross-sectional analytical study was conducted among 300 students aged 15-24 years in 5 secondary schools in Moshi, Tanzania. Bonding networks were defined as social groupings of students participating in activities within the school, while bridging networks were groups that included students participating in social groupings from outside of the school environs. A structured questionnaire was used to ask about participation in bonding and bridging social networks and self-rated HIV risk behavior. More participants participated in bonding networks (72%) than in bridging networks (29%). Participation in bridging networks was greater among females (25%) than males (12%, p < .005). Of 300 participants, 88 (29%) were sexually experienced, and of these 62 (70%) considered themselves to be at low risk of HIV infection. Factors associated with self-rated risk of HIV included: type of school (p < .003), family structure (p < .008), being sexually experienced (p < .004), having had sex in the past three months (p < .009), having an extra sexual partner (p < .054) and non-condom use in last sexual intercourse (p < .001), but not the presence or type of social capital. The study found no association between bonding and bridging social networks on self-rated risk of HIV among study participants. However, sexually experienced participants rated themselves at low risk of HIV infection despite practicing unsafe sex. Efforts to raise adolescents' self-awareness of risk of HIV infection through life skills education and HIV/acquired immunodeficiency syndrome risk reduction strategies may be beneficial to students in this at-risk group

    Electronic structure and exchange interactions of the ladder vanadates CaV2O5 and MgV2O5

    Full text link
    We have performed ab-initio calculations of the electronic structure and exchange couplings in the layered vanadates CaV2O5 and MgV2O5. Based on our results we provide a possible explanation of the unusual magnetic properties of these materials, in particular the large difference in the spin gap between CaV2O5 and MgV2O5

    Autonomous and reversible adhesion using elastomeric suction cups for in-vivo medical treatments

    Get PDF
    Remotely controllable and reversible adhesion is highly desirable for surgical operations: it can provide the possibility of non-invasive surgery, flexibility in fixing a patch and surgical manipulation via sticking. In our previous work, we developed a remotely controllable, ingestible, and deployable pill for use as a patch in the human stomach. In this study, we focus on magnetically facilitated reversible adhesion and develop a suction-based adhesive mechanism as a solution for non-invasive and autonomous adhesion of patches. We present the design, model, and fabrication of a magnet-embedded elastomeric suction cup. The suction cup can be localised, navigated, and activated or deactivated in an autonomous way; all realised magnetically with a pre-programmed fashion. The use of the adhesion mechanism is demonstrated for anchoring and carrying, for patching an internal organ surface and for an object removal, respectively

    Recombination dynamics of a human Y-chromosomal palindrome:rapid GC-biased gene conversion, multi-kilobase conversion tracts, and rare inversions

    Get PDF
    The male-specific region of the human Y chromosome (MSY) includes eight large inverted repeats (palindromes) in which arm-to-arm similarity exceeds 99.9%, due to gene conversion activity. Here, we studied one of these palindromes, P6, in order to illuminate the dynamics of the gene conversion process. We genotyped ten paralogous sequence variants (PSVs) within the arms of P6 in 378 Y chromosomes whose evolutionary relationships within the SNP-defined Y phylogeny are known. This allowed the identification of 146 historical gene conversion events involving individual PSVs, occurring at a rate of 2.9-8.4×10(-4) events per generation. A consideration of the nature of nucleotide change and the ancestral state of each PSV showed that the conversion process was significantly biased towards the fixation of G or C nucleotides (GC-biased), and also towards the ancestral state. Determination of haplotypes by long-PCR allowed likely co-conversion of PSVs to be identified, and suggested that conversion tract lengths are large, with a mean of 2068 bp, and a maximum in excess of 9 kb. Despite the frequent formation of recombination intermediates implied by the rapid observed gene conversion activity, resolution via crossover is rare: only three inversions within P6 were detected in the sample. An analysis of chimpanzee and gorilla P6 orthologs showed that the ancestral state bias has existed in all three species, and comparison of human and chimpanzee sequences with the gorilla outgroup confirmed that GC bias of the conversion process has apparently been active in both the human and chimpanzee lineages

    Local spin and charge properties of beta-Ag0.33V2O5 studied by 51V NMR

    Get PDF
    Local spin and charge properties were studied on beta-Ag0.33V2O5, a pressure-induced superconductor, at ambient pressure using 51V-NMR and zero-field-resonance (ZFR) techniques. Three inequivalent Vi sites (i=1, 2, and 3) were identified from 51V-NMR spectra and the principal axes of the electric-field-gradient (EFG) tensor were determined in a metallic phase and the following charge-ordering phase. We found from the EFG analysis that the V1 sites are in a similar local environment to the V3 sites. This was also observed in ZFR spectra as pairs of signals closely located with each other. These results are well explained by a charge-sharing model where a 3d1 electron is shared within a rung in both V1-V3 and V2-V2 two-leg ladders.Comment: 12pages, 16figure

    Patch antenna microcavity terahertz sources with enhanced emission

    Get PDF
    We study the emission properties of an electroluminescent THz frequency quantum cascade structure embedded in an array of patch antenna double-metal microcavities. We show that high photon extraction efficiencies can be obtained by adjusting the active region thickness and array periodicity as well as high Purcell factors (up to 65), leading to an enhanced overall emitted power. Up to a 44-fold increase in power is experimentally observed in comparison with a reference device processed in conventional mesa geometry. Estimation of the Purcell factors using electromagnetic simulations and the theoretical extraction efficiency are in agreement with the observed power enhancement and show that, in these microcavities, the overall enhancement solely depends on the square of the total quality factor
    corecore