289 research outputs found

    Effect of Gut Microbiota Biotransformation on Dietary Tannins and Human Health Implications

    Get PDF
    Tannins represent a heterogeneous group of high-molecular-weight polyphenols that are ubiquitous among plant families, especially in cereals, as well as in many fruits and vegetables. Hydrolysable and condensed tannins, in addition to phlorotannins from marine algae, are the main classes of these bioactive compounds. Despite their low bioavailability, tannins have many beneficial pharmacological effects, such as anti-inflammatory, antioxidant, antidiabetic, anticancer, and cardioprotective effects. Microbiota-mediated hydrolysis of tannins produces highly bioaccessible metabolites, which have been extensively studied and account for most of the health effects attributed to tannins. This review article summarises the effect of the human microbiota on the metabolism of different tannin groups and the expected health benefits that may be induced by such mutual interactions. Microbial metabolism of tannins yields highly bioaccessible microbial metabolites that account for most of the systemic effects of tannins. This article also uses explainable artificial intelligence to define the molecular signatures of gut-biotransformed tannin metabolites that are correlated with chemical and biological activity. An understanding of microbiota–tannin interactions, tannin metabolism-related phenotypes (metabotypes) and chemical tannin-metabolites motifs is of great importance for harnessing the biological effects of tannins for drug discovery and other health benefits

    Assessment of symptoms of urinary incontinence in women with polycystic ovary syndrome

    Get PDF
    OBJECTIVES: The pelvic floor muscles are sensitive to androgens, and due to hyperandrogenism, women with polycystic ovary syndrome can have increased mass in these muscles compared to controls. The aim of this study is to compare reports of urine leakage and quality of life between women with and without polycystic ovary syndrome. METHODS: One hundred thirteen 18-to 40-year-old nulliparous women with polycystic ovary syndrome or without the disease (controls) were recruited at the University Hospital of School Medicine of São Paulo University at Ribeirão Preto City, Brazil. The subjects were not taking any hormonal medication, had not undergone previous pelvic surgery and did not exercise their pelvic floor muscles. The women were divided into the following four groups: I-polycystic ovary syndrome with normal body mass index (n = 18), II-polycystic ovary syndrome with body mass index >25 (n = 32), III-controls with normal body mass index (n = 29), and IV-controls with Body Mass Index >25 (n = 34). Quality of life was evaluated using the SF-36 questionnaire, and the subjects with urinary complaints also completed the International Consultation on Incontinence Questionnaire Short Form to evaluate the severity of their urinary incontinence. RESULTS: The replies to the International Consultation on Incontinence Questionnaire Short Form revealed a significant difference in urinary function between groups, with 24% of the subjects in group IV reporting urinary incontinence. The mean scores for the SF-36 questionnaire revealed that group II had the lowest quality of life. CONCLUSIONS: The control obese group (IV) reported a higher prevalence of urinary incontinence. There was no difference in the reported frequency of urine loss between the polycystic ovary syndrome and control groups with normal body mass index or between the polycystic ovary syndrome and control groups with body mass index >25

    HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    Get PDF
    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. © 2013 Zhang et al

    The Global COVID-19 Observatory and Resource Center for Childhood Cancer: A response for the pediatric oncology community by SIOP and St. Jude Global

    Get PDF
    The COVID-19 pandemic quickly led to an abundance of publications and recommendations, despite a paucity of information on how COVID-19 affects children with cancer. This created a dire need for a trusted resource with curated information and a space for the pediatric oncology community to share experiences. The Global COVID-19 Observatory and Resource Center for Childhood Cancer was developed, launched, and maintained by the International Society of Pediatric Oncology and St. Jude Children's Research Hospital. The three components (Resource Library, Global Registry, and Collaboration Space) complement each other, establishing a mechanism to generate and transfer knowledge rapidly throughout the community

    Global characteristics and outcomes of SARS-CoV-2 infection in children and adolescents with cancer (GRCCC): a cohort study

    Get PDF
    BACKGROUND: Previous studies have shown that children and adolescents with COVID-19 generally have mild disease. Children and adolescents with cancer, however, can have severe disease when infected with respiratory viruses. In this study, we aimed to understand the clinical course and outcomes of SARS-CoV-2 infection in children and adolescents with cancer. METHODS: We did a cohort study with data from 131 institutions in 45 countries. We created the Global Registry of COVID-19 in Childhood Cancer to capture de-identified data pertaining to laboratory-confirmed SARS-CoV-2 infections in children and adolescents (<19 years) with cancer or having received a haematopoietic stem-cell transplantation. There were no centre-specific exclusion criteria. The registry was disseminated through professional networks through email and conferences and health-care providers were invited to submit all qualifying cases. Data for demographics, oncological diagnosis, clinical course, and cancer therapy details were collected. Primary outcomes were disease severity and modification to cancer-directed therapy. The registry remains open to data collection. FINDINGS: Of 1520 submitted episodes, 1500 patients were included in the study between April 15, 2020, and Feb 1, 2021. 1319 patients had complete 30-day follow-up. 259 (19·9%) of 1301 patients had a severe or critical infection, and 50 (3·8%) of 1319 died with the cause attributed to COVID-19 infection. Modifications to cancer-directed therapy occurred in 609 (55·8%) of 1092 patients receiving active oncological treatment. Multivariable analysis revealed several factors associated with severe or critical illness, including World Bank low-income or lower-middle-income (odds ratio [OR] 5·8 [95% CI 3·8-8·8]; p<0·0001) and upper-middle-income (1·6 [1·2-2·2]; p=0·0024) country status; age 15-18 years (1·6 [1·1-2·2]; p=0·013); absolute lymphocyte count of 300 or less cells per mm3 (2·5 [1·8-3·4]; p<0·0001), absolute neutrophil count of 500 or less cells per mm3 (1·8 [1·3-2·4]; p=0·0001), and intensive treatment (1·8 [1·3-2·3]; p=0·0005). Factors associated with treatment modification included upper-middle-income country status (OR 0·5 [95% CI 0·3-0·7]; p=0·0004), primary diagnosis of other haematological malignancies (0·5 [0·3-0·8]; p=0·0088), the presence of one of more COVID-19 symptoms at the time of presentation (1·8 [1·3-2·4]; p=0·0002), and the presence of one or more comorbidities (1·6 [1·1-2·3]; p=0·020). INTERPRETATION: In this global cohort of children and adolescents with cancer and COVID-19, severe and critical illness occurred in one fifth of patients and deaths occurred in a higher proportion than is reported in the literature in the general paediatric population. Additionally, we found that variables associated with treatment modification were not the same as those associated with greater disease severity. These data could inform clinical practice guidelines and raise awareness globally that children and adolescents with cancer are at high-risk of developing severe COVID-19 illness. FUNDING: American Lebanese Syrian Associated Charities and the National Cancer Institute

    Inferring Binding Energies from Selected Binding Sites

    Get PDF
    We employ a biophysical model that accounts for the non-linear relationship between binding energy and the statistics of selected binding sites. The model includes the chemical potential of the transcription factor, non-specific binding affinity of the protein for DNA, as well as sequence-specific parameters that may include non-independent contributions of bases to the interaction. We obtain maximum likelihood estimates for all of the parameters and compare the results to standard probabilistic methods of parameter estimation. On simulated data, where the true energy model is known and samples are generated with a variety of parameter values, we show that our method returns much more accurate estimates of the true parameters and much better predictions of the selected binding site distributions. We also introduce a new high-throughput SELEX (HT-SELEX) procedure to determine the binding specificity of a transcription factor in which the initial randomized library and the selected sites are sequenced with next generation methods that return hundreds of thousands of sites. We show that after a single round of selection our method can estimate binding parameters that give very good fits to the selected site distributions, much better than standard motif identification algorithms

    A gene expression signature associated with survival in metastatic melanoma

    Get PDF
    BACKGROUND: Current clinical and histopathological criteria used to define the prognosis of melanoma patients are inadequate for accurate prediction of clinical outcome. We investigated whether genome screening by means of high-throughput gene microarray might provide clinically useful information on patient survival. METHODS: Forty-three tumor tissues from 38 patients with stage III and stage IV melanoma were profiled with a 17,500 element cDNA microarray. Expression data were analyzed using significance analysis of microarrays (SAM) to identify genes associated with patient survival, and supervised principal components (SPC) to determine survival prediction. RESULTS: SAM analysis revealed a set of 80 probes, corresponding to 70 genes, associated with survival, i.e. 45 probes characterizing longer and 35 shorter survival times, respectively. These transcripts were included in a survival prediction model designed using SPC and cross-validation which allowed identifying 30 predicting probes out of the 80 associated with survival. CONCLUSION: The longer-survival group of genes included those expressed in immune cells, both innate and acquired, confirming the interplay between immunological mechanisms and the natural history of melanoma. Genes linked to immune cells were totally lacking in the poor-survival group, which was instead associated with a number of genes related to highly proliferative and invasive tumor cells

    Hepatocyte Growth Factor Modulates Interleukin-6 Production in Bone Marrow Derived Macrophages: Implications for Inflammatory Mediated Diseases

    Get PDF
    The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuel the acute phase response (APR). To maintain body homeostasis, the increase of inflammatory proteins is resolved by acute phase proteins via presently unknown mechanisms. Hepatocyte growth factor (HGF) is transcribed in response to IL-6. Since IL-6 production promotes the generation of HGF and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling excess inflammation under non-pathological conditions. We sought to assess the role of HGF and how it influences the regulation of inflammation utilizing a well-defined model of inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived macrophages (BMM). BMM were isolated from C57BL6 mice and were stimulated with LPS in the presence or absence of HGF. When HGF was present, there was a decrease in production of the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine IL-10. Altered cytokine production correlated with an increase in phosphorylated GSK3β, increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced interaction between CBP and phospho-CREB. These changes were a direct result of signaling through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout mice. Combined, these data provide compelling evidence that under normal circumstances, HGF acts to suppress the inflammatory response

    Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prognostic factors in malignant melanoma are currently based on clinical data and morphologic examination. Other prognostic features, however, which are not yet used in daily practice, might add important information and thus improve prognosis, treatment, and survival. Therefore a search for new markers is desirable. Previous studies have demonstrated that fractal characteristics of nuclear chromatin are of prognostic importance in neoplasias. We have therefore investigated whether the fractal dimension of nuclear chromatin measured in routine histological preparations of malignant melanomas could be a prognostic factor for survival.</p> <p>Methods</p> <p>We examined 71 primary superficial spreading cutaneous melanoma specimens (thickness ≥ 1 mm) from patients with a minimum follow up of 5 years. Nuclear area, form factor and fractal dimension of chromatin texture were obtained from digitalized images of hematoxylin-eosin stained tissue micro array sections. Clark's level, tumor thickness and mitotic rate were also determined.</p> <p>Results</p> <p>The median follow-up was 104 months. Tumor thickness, Clark's level, mitotic rate, nuclear area and fractal dimension were significant risk factors in univariate Cox regressions. In the multivariate Cox regression, stratified for the presence or absence of metastases at diagnosis, only the Clark level and fractal dimension of the nuclear chromatin were included as independent prognostic factors in the final regression model.</p> <p>Conclusion</p> <p>In general, a more aggressive behaviour is usually found in genetically unstable neoplasias with a higher number of genetic or epigenetic changes, which on the other hand, provoke a more complex chromatin rearrangement. The increased nuclear fractal dimension found in the more aggressive melanomas is the mathematical equivalent of a higher complexity of the chromatin architecture. So, there is strong evidence that the fractal dimension of the nuclear chromatin texture is a new and promising variable in prognostic models of malignant melanomas.</p
    corecore