34 research outputs found

    Impact of glucocorticoid receptor density on ligand-independent dimerization, cooperative ligand-binding and basal priming of transactivation: a cell culture model

    Get PDF
    Glucocorticoid receptor (GR) levels vary between tissues and individuals and are altered by physiological and pharmacological effectors. However, the effects and implications of differences in GR concentration have not been fully elucidated. Using three statistically different GR concentrations in transiently transfected COS-1 cells, we demonstrate, using co-immunoprecipitation (CoIP) and fluorescent resonance energy transfer (FRET), that high levels of wild type GR (wtGR), but not of dimerization deficient GR (GRdim), display ligand-independent dimerization. Whole-cell saturation ligand-binding experiments furthermore establish that positive cooperative ligand-binding, with a concomitant increased ligand-binding affinity, is facilitated by ligand-independent dimerization at high concentrations of wtGR, but not GRdim. The down-stream consequences of ligand-independent dimerization at high concentrations of wtGR, but not GRdim, are shown to include basal priming of the system as witnessed by ligand-independent transactivation of both a GRE-containing promoter-reporter and the endogenous glucocorticoid (GC)-responsive gene, GILZ, as well as ligand-independent loading of GR onto the GILZ promoter. Pursuant to the basal priming of the system, addition of ligand results in a significantly greater modulation of transactivation potency than would be expected solely from the increase in ligand-binding affinity. Thus ligand-independent dimerization of the GR at high concentrations primes the system, through ligand-independent DNA loading and transactivation, which together with positive cooperative ligand-binding increases the potency of GR agonists and shifts the bio-character of partial GR agonists. Clearly GR-levels are a major factor in determining the sensitivity to GCs and a critical factor regulating transcriptional programs

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): a double-blind, randomised, placebo-controlled trial

    Get PDF
    Background: Short-term treatment for people with type 2 diabetes using a low dose of the selective endothelin A receptor antagonist atrasentan reduces albuminuria without causing significant sodium retention. We report the long-term effects of treatment with atrasentan on major renal outcomes. Methods: We did this double-blind, randomised, placebo-controlled trial at 689 sites in 41 countries. We enrolled adults aged 18–85 years with type 2 diabetes, estimated glomerular filtration rate (eGFR)25–75 mL/min per 1·73 m 2 of body surface area, and a urine albumin-to-creatinine ratio (UACR)of 300–5000 mg/g who had received maximum labelled or tolerated renin–angiotensin system inhibition for at least 4 weeks. Participants were given atrasentan 0·75 mg orally daily during an enrichment period before random group assignment. Those with a UACR decrease of at least 30% with no substantial fluid retention during the enrichment period (responders)were included in the double-blind treatment period. Responders were randomly assigned to receive either atrasentan 0·75 mg orally daily or placebo. All patients and investigators were masked to treatment assignment. The primary endpoint was a composite of doubling of serum creatinine (sustained for ≥30 days)or end-stage kidney disease (eGFR <15 mL/min per 1·73 m 2 sustained for ≥90 days, chronic dialysis for ≥90 days, kidney transplantation, or death from kidney failure)in the intention-to-treat population of all responders. Safety was assessed in all patients who received at least one dose of their assigned study treatment. The study is registered with ClinicalTrials.gov, number NCT01858532. Findings: Between May 17, 2013, and July 13, 2017, 11 087 patients were screened; 5117 entered the enrichment period, and 4711 completed the enrichment period. Of these, 2648 patients were responders and were randomly assigned to the atrasentan group (n=1325)or placebo group (n=1323). Median follow-up was 2·2 years (IQR 1·4–2·9). 79 (6·0%)of 1325 patients in the atrasentan group and 105 (7·9%)of 1323 in the placebo group had a primary composite renal endpoint event (hazard ratio [HR]0·65 [95% CI 0·49–0·88]; p=0·0047). Fluid retention and anaemia adverse events, which have been previously attributed to endothelin receptor antagonists, were more frequent in the atrasentan group than in the placebo group. Hospital admission for heart failure occurred in 47 (3·5%)of 1325 patients in the atrasentan group and 34 (2·6%)of 1323 patients in the placebo group (HR 1·33 [95% CI 0·85–2·07]; p=0·208). 58 (4·4%)patients in the atrasentan group and 52 (3·9%)in the placebo group died (HR 1·09 [95% CI 0·75–1·59]; p=0·65). Interpretation: Atrasentan reduced the risk of renal events in patients with diabetes and chronic kidney disease who were selected to optimise efficacy and safety. These data support a potential role for selective endothelin receptor antagonists in protecting renal function in patients with type 2 diabetes at high risk of developing end-stage kidney disease. Funding: AbbVie

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Inhibition of acetylcholine-activated K(+) currents by U73122 is mediated by the inhibition of PIP(2)-channel interaction

    No full text
    1. We have investigated the effect of U73122, a specific inhibitor of phospholipase C (PLC), on acetylcholine-activated K(+) currents (I(KACh)) in mouse atrial myocytes. 2. In perforated patch clamp mode, I(KACh) was activated by 10 μM acetylcholine. When atrial myocytes were pretreated with U73122 or U73343, I(KACh) was inhibited dose-dependently (half-maximal inhibition at 0.12±0.0085 and 0.16±0.0176 μM, respectively). The current-voltage relationships for I(KACh) in the absence and in the presence of U73122 showed that the inhibition occurred uniformly from −120 to +40 mV, indicating a voltage-independent inhibition. 3. When U73122 was applied after I(KACh) reached steady-state, a gradual decrease in I(KACh) was observed. The time course of the current decrease was well fitted to a single exponential, and the rate constant was proportional to the concentration of U73122. 4. When K(ACh) channels were directly activated by adding 1 mM GTPγS to the bath solution in inside-out patches, U73122 (1 μM) decreased the open probability significantly without change in mean open time. When K(ACh) channels were activated independently of G-protein activation by 20 mM Na(+), open probability was also inhibited by U73122. 5. Voltage-activated K(+) currents and inward rectifying K(+) currents were not affected by U73122. 6. These findings show that inhibition by U73122 and U73343 of K(ACh) channels occurs at a level downstream of the action of Gβγ or Na(+) on channel activation. The interference with phosphatidylinositol 4,5-bisphosphate (PIP(2))-channel interaction can be suggested as a most plausible mechanism

    Angiopoietin-1 Protects Heart against Ischemia/Reperfusion Injury through VE-Cadherin Dephosphorylation and Myocardiac Integrin-β1/ERK/Caspase-9 Phosphorylation Cascade

    No full text
    Early reperfusion after myocardial ischemia that is essential for tissue salvage also causes myocardial and vascular injury. Cardioprotection during reperfusion therapy is an essential aspect of treating myocardial infarction. Angiopoietin-1 is an endothelial-specific angiogenic factor. The potential effects of angiopoietin-1 on cardiomyocytes and vascular cells undergoing reperfusion have not been investigated. We propose a protective mechanism whereby angiopoietin-1 increases the integrity of the endothelial lining and exerts a direct survival effect on cardiomyocytes under myocardial ischemia followed by reperfusion. First, we found that angiopoietin-1 prevents vascular leakage through regulating vascular endothelial (VE)-cadherin phosphorylation. The membrane expression of VE-cadherin was markedly decreased on hypoxia/reoxygenation but was restored by angiopoietin-1 treatment. Interestingly, these effects were mediated by the facilitated binding between SH2 domain–containing tyrosine phosphatase (SHP2) or receptor protein tyrosine phosphatase μ (PTPμ) and VE-cadherin, leading to dephosphorylation of VE-cadherin. siRNA against SHP2 or PTPμ abolished the effect of angiopoietin-1 on VE-cadherin dephosphorylation and thereby decreased levels of membrane-localized VE-cadherin. Second, we found that angiopoietin-1 prevented cardiomyocyte death, although cardiomyocytes lack the angiopoietin-1 receptor Tie2. Angiopoietin-1 increased cardiomyocyte survival through integrin-β1–mediated extracellular signal–regulated kinase (ERK) phosphorylation, which inhibited caspase-9 through phosphorylation at Thr125 and subsequently reduced active caspase-3. Neutralizing antibody against integrin-β1 blocked these protective effects. In a mouse myocardial ischemia/reperfusion model, angiopoietin-1 enhanced cardiac function and reduction in left ventricular–end systolic dimension (LV-ESD) and left ventricular–end diastolic dimension (LV-EDD) with an increase in ejection fraction (EF) and fractional shortening (FS). Our findings suggest the novel cardioprotective mechanisms of angiopoietin-1 that are achieved by reducing both vascular leakage and cardiomyocyte death after ischemia/reperfusion injury
    corecore