1,322 research outputs found

    Itinerant ferromagnetism in the multiorbital Hubbard model: a dynamical mean-field study

    Full text link
    In order to resolve the long-standing issue of how the itinerant ferromagnetism is affected by the lattice structure and Hund's coupling, we have compared various three-dimensional lattice structures in the single- and multiorbital Hubbard models with the dynamical mean-field theory with an improved quantum Monte Carlo algorithm that preserves the spin-SU(2) symmetry. The result indicates that {\it both} the lattice structure and the d-orbital degeneracy are essential for the ferromagnetism in the parameter region representing a transition metal. Specifically, (a) Hund's coupling, despite the common belief, is important, which is here identified to come from particle-hole scatterings, and (b) the ferromagnetism is a correlation effect (outside the Stoner picture) as indicated from the band-filling dependence.Comment: 4 pages, 5 figure

    Stochastic Liouville Equations for Femtosecond Stimulated Raman Spectroscopy

    Full text link
    Electron and vibrational dynamics of molecules are commonly studied by subjecting them to two interactions with a fast actinic pulse that prepares them in a nonstationary state and after a variable delay period TT, probing them with a Raman process induced by a combination of a broadband and a narrowband pulse. This technique known as femtosecond stimulated Raman spectroscopy (FSRS) can effectively probe time resolved vibrational resonances. We show how FSRS signals can be modeled and interpreted using the stochastic Liouville equations (SLE) originally developed for NMR lineshapes. The SLE provides a convenient simulation protocol that can describe complex dynamics due to coupling to collective coordinates at much lower cost that a full dynamical simulation. The origin of the dispersive features which appear when there is no separation of timescales between vibrational variations and dephasing is clarified

    Integration of fiber coupled high-Q silicon nitride microdisks with atom chips

    Full text link
    Micron scale silicon nitride (SiN_x) microdisk optical resonators are demonstrated with Q = 3.6 x 10^6 and an effective mode volume of 15 (\lambda / n)^3 at near visible wavelengths. A hydrofluoric acid wet etch provides sensitive tuning of the microdisk resonances, and robust mounting of a fiber taper provides efficient fiber optic coupling to the microdisks while allowing unfettered optical access for laser cooling and trapping of atoms. Measurements indicate that cesium adsorption on the SiN_x surfaces significantly red-detunes the microdisk resonances. A technique for parallel integration of multiple (10) microdisks with a single fiber taper is also demonstrated.Comment: Published vesion. Minor change

    Electronic structure of solid coronene: differences and commonalities to picene

    Full text link
    We have obtained the first-principles electronic structure of solid coronene, which has been recently discovered to exhibit superconductivity with potassium doping. Since coronene, along with picene, the first aromatic superconductor, now provide a class of superconductors as solids of aromatic compounds, here we compare the two cases in examining the electronic structures. In the undoped coronene crystal, where the molecules are arranged in a herringbone structure with two molecules in a unit cell, the conduction band above an insulating gap is found to comprise four bands, which basically originate from the lowest two unoccupied molecular orbitals (doubly-degenerate, reflecting the high symmetry of the molecular shape) in an isolated molecule but the bands are entangled as in solid picene. The Fermi surface for a candidate of the structure of Kx_xcoronene with x=3x=3, for which superconductivity is found, comprises multiple sheets, as in doped picene but exhibiting a larger anisotropy with different topology.Comment: 5 pages, to be published in Phys. Rev.

    Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings

    Full text link
    By extending a dynamical mean-field approximation (DMA) previously proposed by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy NN-unit FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number ZZ may change from local (Z≪NZ \ll N ) to global couplings (Z=N−1Z=N-1) and/or whose concentration of random couplings pp is allowed to vary from regular (p=0p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair and that for a pair without direct couplings. The original 2N2 N-dimensional {\it stochastic} differential equations are transformed to 13-dimensional {\it deterministic} differential equations expressed in terms of means, variances and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of ZZ and pp. Our calculations have shown that with increasing pp, the synchronization is {\it worse} because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by out theory are in good agreement with those by direct simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change

    Spontaneous dressed-state polarization in the strong driving regime of cavity QED

    Get PDF
    We utilize high-bandwidth phase quadrature homodyne measurement of the light transmitted through a Fabry-Perot cavity, driven strongly and on resonance, to detect excess phase noise induced by a single intracavity atom. We analyze the correlation properties and driving-strength dependence of the atom-induced phase noise to establish that it corresponds to the long-predicted phenomenon of spontaneous dressed-state polarization. Our experiment thus provides a demonstration of cavity quantum electrodynamics in the strong driving regime, in which one atom interacts strongly with a many-photon cavity field to produce novel quantum stochastic behavior.Comment: 4 pages, 4 color figure

    SCIENCE TALK IN THE SECONDARY CLASSROOMS: ANALYSIS OF TEACHERS’ FEEDBACK

    Get PDF
    Feedback, the third part of Initiation-Response-Feedback (IRF) structure in typical lesson discussion, is the most crucial part of teaching and science talk. Feedback constructs cognitive scaffolding as well as dialogical pattern of discussion in the classroom. Several studies analyzing teachers’ feedback types and wait time of effect have been reported. Owing to its tremendous effect on teaching and learning, as stated by Chin (2007), a fine grained analysis has been felt. Video recorded data of fourteen science lessons in secondary level (Grade VI-X) of Bangladesh used as data source of this study. Data were analyzed with coded category. Through video analysis, the nine categories of teachers’ feedback were emerged to students’ correct and incorrect or no response. The prevalent nature of feedback was evaluative and corrective. All the generated categories were illustrated with example taken from the real lesson and tried to explain the effect of each type of feedback on lesson discussion. The results of the study are illustrated vignettes of the teachers’ varieties of feedback and the role of the feedback at secondary science lessons, and would be helpful for teachers to think and frame their practices that make a science lesson into collaborative, dialogic and facilitative one

    Deterministic Dicke state preparation with continuous measurement and control

    Get PDF
    We characterize the long-time projective behavior of the stochastic master equation describing a continuous, collective spin measurement of an atomic ensemble both analytically and numerically. By adding state based feedback, we show that it is possible to prepare highly entangled Dicke states deterministically.Comment: Additional information is available at http://minty.caltech.edu/Ensemble
    • …
    corecore