research

Dynamical mean-filed approximation to small-world networks of spiking neurons: From local to global, and/or from regular to random couplings

Abstract

By extending a dynamical mean-field approximation (DMA) previously proposed by the author [H. Hasegawa, Phys. Rev. E {\bf 67}, 41903 (2003)], we have developed a semianalytical theory which takes into account a wide range of couplings in a small-world network. Our network consists of noisy NN-unit FitzHugh-Nagumo (FN) neurons with couplings whose average coordination number ZZ may change from local (ZNZ \ll N ) to global couplings (Z=N1Z=N-1) and/or whose concentration of random couplings pp is allowed to vary from regular (p=0p=0) to completely random (p=1). We have taken into account three kinds of spatial correlations: the on-site correlation, the correlation for a coupled pair and that for a pair without direct couplings. The original 2N2 N-dimensional {\it stochastic} differential equations are transformed to 13-dimensional {\it deterministic} differential equations expressed in terms of means, variances and covariances of state variables. The synchronization ratio and the firing-time precision for an applied single spike have been discussed as functions of ZZ and pp. Our calculations have shown that with increasing pp, the synchronization is {\it worse} because of increased heterogeneous couplings, although the average network distance becomes shorter. Results calculated by out theory are in good agreement with those by direct simulations.Comment: 19 pages, 2 figures: accepted in Phys. Rev. E with minor change

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020