1,115 research outputs found

    Effects of heat release in a turbulent, reacting shear layer

    Get PDF
    Experiments were conducted to study the effects of heat release in a planar, gas-phase, reacting mixing layer formed between two free streams, one containing hydrogen in an inert diluent, the other, fluorine in an inert diluent. Sufficiently high concentrations of reactants were utilized to produce adiabatic flame temperature rises of up to 940 K (corresponding to 1240 K absolute). The temperature field was measured at eight fixed points across the layer. Flow visualization was accomplished by schlieren spark and motion picture photography. Mean velocity information was extracted from Pitot-probe dynamic pressure measurements. The results showed that the growth rate of the layer, for conditions of zero streamwise pressure gradient, decreased slightly with increasing heat release. The overall entrainment into the layer was substantially reduced as a consequence of heat release. A posteriori calculations suggest that the decrease in layer growth rate is consistent with a corresponding reduction in turbulent shear stress. Large-scale coherent structures were observed at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease was more than the corresponding decrease in shear-layer growth rate, and suggests that the mechanisms of vortex amalgamation are, in some manner, inhibited by heat release. The mean temperature rise profiles; normalized by the adiabatic flame temperature rise, were not greatly changed in shape over the range of heat release of this investigation. A small decrease in normalized mean temperature rise with heat release was however observed. Imposition of a favourable pressure gradient in a mixing layer with heat release resulted in an additional decrease in layer growth rate, and caused only a very slight increase in the mixing and amount of chemical product formation. The additional decrease in layer growth rate is shown to be accounted for in terms of the change in free-stream velocity ratio induced by the pressure gradient

    The High Road

    Get PDF
    Discusses the obstacles to international accounting standards convergence. Effort of the International Accounting Standards Committee (IASC) to promote to convergence theme; Comparison between the convergence frameworks of the U.S. Securities and Exchange Commission and the Financial Accounting Standards Board; Sections of the \u27Framework for the Preparation and Presentation of Financial Statements\u27 document issued by the IASC

    Obstacles to International Accounting Standards Convergence

    Get PDF
    Given the recent changes in the international sector, along with the similarities in the conceptual frameworks of the FASB and IASC, the relatively swift convergence of US GAAP and International Accounting Standards is a distinct possibility. This article contends convergence is possible, and reviews 3 key areas that could hinder or foster it: 1. the general organization, in terms of form and topical content, of the frameworks, 2. a significant pervasive difference between the frameworks, and 3. specific differences within the major topical areas of the frameworks

    Effects of heat release in a turbulent, reacting shear layer

    Get PDF
    Experiments were conducted to study the effects of heat release in a planar, gas-phase, reacting mixing layer formed between two free streams, one containing hydrogen in an inert diluent, the other, fluorine in an inert diluent. Sufficiently high concentrations of reactants were utilized to produce adiabatic flame temperature rises of up to 940 K (corresponding to 1240 K absolute). The temperature field was measured at eight fixed points across the layer. Flow visualization was accomplished by schlieren spark and motion picture photography. Mean velocity information was extracted from Pitot-probe dynamic pressure measurements. The results showed that the growth rate of the layer, for conditions of zero streamwise pressure gradient, decreased slightly with increasing heat release. The overall entrainment into the layer was substantially reduced as a consequence of heat release. A posteriori calculations suggest that the decrease in layer growth rate is consistent with a corresponding reduction in turbulent shear stress. Large-scale coherent structures were observed at all levels of heat release in this investigation. The mean structure spacing decreased with increasing temperature. This decrease was more than the corresponding decrease in shear-layer growth rate, and suggests that the mechanisms of vortex amalgamation are, in some manner, inhibited by heat release. The mean temperature rise profiles; normalized by the adiabatic flame temperature rise, were not greatly changed in shape over the range of heat release of this investigation. A small decrease in normalized mean temperature rise with heat release was however observed. Imposition of a favourable pressure gradient in a mixing layer with heat release resulted in an additional decrease in layer growth rate, and caused only a very slight increase in the mixing and amount of chemical product formation. The additional decrease in layer growth rate is shown to be accounted for in terms of the change in free-stream velocity ratio induced by the pressure gradient

    Dielectrophoresis of nanocolloids: a molecular dynamics study

    Full text link
    Dielectrophoresis (DEP), the motion of polarizable particles in non-uniform electric fields, has become an important tool for the transport, separation, and characterization of microparticles in biomedical and nanoelectronics research. In this article we present, to our knowledge, the first molecular dynamics simulations of DEP of nanometer-sized colloidal particles. We introduce a simplified model for polarizable nanoparticles, consisting of a large charged macroion and oppositely charged microions, in an explicit solvent. The model is then used to study DEP motion of the particle at different combinations of temperature and electric field strength. In accord with linear response theory, the particle drift velocities are shown to be proportional to the DEP force. Analysis of the colloid DEP mobility shows a clear time dependence, demonstrating the variation of friction under non-equilibrium. The time dependence of the mobility further results in an apparent weak variation of the DEP displacements with temperature

    Asymptomatic sensitization to a cow\u27s milk protein induces sustained neuroinflammation and behavioral changes with chronic allergen exposure

    Get PDF
    Mouse models of food allergy have contributed to our understanding of various aspects of the disease, including susceptibilities, symptom spectra, cellular mechanisms, and therapeutic approaches. Previously, we used a mouse model of non-anaphylactic cow’s milk allergy (CMA) and investigated sex- and strain-dependent differences in immunological, neurological, and behavioral sequelae. We showed that male C57BL/6J mice sensitized to a bovine whey protein, β-lactoglobulin (BLG; Bos d 5), exhibited anxiety- and depression-like behavior upon acute allergen challenge. Systemic levels of BLG-specific immunoglobulins, cytokines and chemokines were also elevated in the sensitized mice. Furthermore, neuroinflammation and intestinal dysbiosis were evident as the possible causes of the altered behavior. To assess whether frequent allergen exposure influences CMA-associated pathologies over an extended period in this subclinical model, we placed BLG-sensitized mice on a whey protein (WP)-containing or whey-free control (CTL) diet for 3 months. As expected, allergen-specific IgE was significantly elevated in the plasma after completing the 5-week sensitization phase. However, the IgE levels declined in both diet groups after 3 months. In contrast, allergen-specific IgG1 stayed elevated in sensitized mice with the CTL diet, and the WP diet to a lesser extent. Interestingly, BLG-sensitized mice on the WP diet exhibited anxiety-like behavior and a trend toward spatial memory decline compared to the sham or the sensitized mice on the CTL diet. Moreover, increased immunoreactivities for GFAP and Iba1 and elevated levels of CXCL13 and CCL12, the chemokines involved in central leukocyte recruitment and other neurological diseases, were also observed in the brain. We demonstrated that sensitization to the whey protein, particularly with continuous allergen exposure, resulted in persistent neuroinflammation and associated behavioral changes despite lowered allergen-specific immunoglobulin levels. These results suggested that continuous consumption of the offending allergen may lead to adverse consequences in the brain even after desensitizatio

    Effects of heat release in a turbulent, reacting shear layer

    Full text link

    Hemicellulases and auxiliary enzymes for improved conversion of lignocellulosic biomass to monosaccharides

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. This is especially important for alkaline pretreatments such as Ammonia fiber expansion (AFEX) pretreated corn stover. Hence, a diverse set of hemicellulases supplemented along with cellulases is necessary for high recovery of monosaccharides.</p> <p>Results</p> <p>The core fungal cellulases in the optimal cocktail include cellobiohydrolase I [CBH I; glycoside hydrolase (GH) family 7A], cellobiohydrolase II (CBH II; GH family 6A), endoglucanase I (EG I; GH family 7B) and β-glucosidase (βG; GH family 3). Hemicellulases tested along with the core cellulases include xylanases (LX1, GH family 10; LX2, GH family 10; LX3, GH family 10; LX4, GH family 11; LX5, GH family 10; LX6, GH family 10), β-xylosidase (LβX; GH family 52), α-arabinofuranosidase (LArb, GH family 51) and α-glucuronidase (LαGl, GH family 67) that were cloned, expressed and/or purified from different bacterial sources. Different combinations of these enzymes were tested using a high-throughput microplate based 24 h hydrolysis assay. Both family 10 (LX3) and family 11 (LX4) xylanases were found to most efficiently hydrolyze AFEX pretreated corn stover in a synergistic manner. The optimal mass ratio of xylanases (LX3 and LX4) to cellulases (CBH I, CBH II and EG I) is 25:75. LβX (0.6 mg/g glucan) is crucial to obtaining monomeric xylose (54% xylose yield), while LArb (0.6 mg/g glucan) and LαGl (0.8 mg/g glucan) can both further increase xylose yield by an additional 20%. Compared with Accellerase 1000, a purified cocktail of cellulases supplemented with accessory hemicellulases will not only increase both glucose and xylose yields but will also decrease the total enzyme loading needed for equivalent yields.</p> <p>Conclusions</p> <p>A diverse set of accessory hemicellulases was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (~20 mg protein/g glucan) using an in-house developed cocktail compared to commercial enzymes.</p
    • …
    corecore