64 research outputs found

    Elevated CRP and TNF-α Levels are Associated with Blunted Neural Oscillations Serving Fluid Intelligence

    Get PDF
    INTRODUCTION: Inflammatory processes help protect the body from potential threats such as bacterial or viral invasions. However, when such inflammatory processes become chronically engaged, synaptic impairments and neuronal cell death may occur. In particular, persistently high levels of C-reactive protein (CRP) and tumor necrosis factor-alpha (TNF-α) have been linked to deficits in cognition and several psychiatric disorders. Higher-order cognitive processes such as fluid intelligence (Gf) are thought to be particularly vulnerable to persistent inflammation. Herein, we investigated the relationship between elevated CRP and TNF-α and the neural oscillatory dynamics serving Gf. METHODS: Seventy adults between the ages of 20-66 years (Mean = 45.17 years, SD = 16.29, 21.4% female) completed an abstract reasoning task that probes Gf during magnetoencephalography (MEG) and provided a blood sample for inflammatory marker analysis. MEG data were imaged in the time-frequency domain, and whole-brain regressions were conducted using each individual\u27s plasma CRP and TNF-α concentrations per oscillatory response, controlling for age, BMI, and education. RESULTS: CRP and TNF-α levels were significantly associated with region-specific neural oscillatory responses. In particular, elevated CRP concentrations were associated with altered gamma activity in the right inferior frontal gyrus and right cerebellum. In contrast, elevated TNF-α levels scaled with alpha/beta oscillations in the left anterior cingulate and left middle temporal, and gamma activity in the left intraparietal sulcus. DISCUSSION: Elevated inflammatory markers such as CRP and TNF-α were associated with aberrant neural oscillations in regions important for Gf. Linking inflammatory markers with regional neural oscillations may hold promise in identifying mechanisms of cognitive and psychiatric disorders

    Boundary Limitation of Wavenumbers in Taylor-Vortex Flow

    Full text link
    We report experimental results for a boundary-mediated wavenumber-adjustment mechanism and for a boundary-limited wavenumber-band of Taylor-vortex flow (TVF). The system consists of fluid contained between two concentric cylinders with the inner one rotating at an angular frequency Ω\Omega. As observed previously, the Eckhaus instability (a bulk instability) is observed and limits the stable wavenumber band when the system is terminated axially by two rigid, non-rotating plates. The band width is then of order ϵ1/2\epsilon^{1/2} at small ϵ\epsilon (ϵ≡Ω/Ωc−1\epsilon \equiv \Omega/\Omega_c - 1) and agrees well with calculations based on the equations of motion over a wide ϵ\epsilon-range. When the cylinder axis is vertical and the upper liquid surface is free (i.e. an air-liquid interface), vortices can be generated or expelled at the free surface because there the phase of the structure is only weakly pinned. The band of wavenumbers over which Taylor-vortex flow exists is then more narrow than the stable band limited by the Eckhaus instability. At small ϵ\epsilon the boundary-mediated band-width is linear in ϵ\epsilon. These results are qualitatively consistent with theoretical predictions, but to our knowledge a quantitative calculation for TVF with a free surface does not exist.Comment: 8 pages incl. 9 eps figures bitmap version of Fig

    Cortical dynamics and subcortical signatures of motor-language coupling in Parkinson’s disease

    Get PDF
    ABSTRACT: Impairments of action language have been documented in early stage Parkinson’s disease (EPD). The action-sentence compatibility effect (ACE) paradigm has revealed that EPD involves deficits to integrate action-verb processing and ongoing motor actions. Recent studies suggest that an abolished ACE in EPD reflects a cortico-subcortical disruption, and recent neurocognitive models highlight the role of the basal ganglia (BG) in motor-language coupling. Building on such breakthroughs, we report the first exploration of convergent cortical and subcortical signatures of ACE in EPD patients and matched controls. Specifically, we combined cortical recordings of the motor potential, functional connectivity measures, and structural analysis of the BG through voxelbased morphometry. Relative to controls, EPD patients exhibited an impaired ACE, a reduced motor potential, and aberrant frontotemporal connectivity. Furthermore, motor potential abnormalities during the ACE task were predicted by overall BG volume and atrophy. These results corroborate that motor-language coupling is mainly subserved by a cortico-subcortical network including the BG as a key hub. They also evince that action-verb processing may constitute a neurocognitive marker of EPD. Our findings suggest that research on the relationship between language and motor domains is crucial to develop models of motor cognition as well as diagnostic and intervention strategies

    Global Changes in Staphylococcus aureus Gene Expression in Human Blood

    Get PDF
    Staphylococcus aureus is a leading cause of bloodstream infections worldwide. In the United States, many of these infections are caused by a strain known as USA300. Although progress has been made, our understanding of the S. aureus molecules that promote survival in human blood and ultimately facilitate metastases is incomplete. To that end, we analyzed the USA300 transcriptome during culture in human blood, human serum, and trypticase soy broth (TSB), a standard laboratory culture media. Notably, genes encoding several cytolytic toxins were up-regulated in human blood over time, and hlgA, hlgB, and hlgC (encoding gamma-hemolysin subunits HlgA, HlgB, and HlgC) were among the most highly up-regulated genes at all time points. Compared to culture supernatants from a wild-type USA300 strain (LAC), those derived from an isogenic hlgABC-deletion strain (LACΔhlgABC) had significantly reduced capacity to form pores in human neutrophils and ultimately cause neutrophil lysis. Moreover, LACΔhlgABC had modestly reduced ability to cause mortality in a mouse bacteremia model. On the other hand, wild-type and LACΔhlgABC strains caused virtually identical abscesses in a mouse skin infection model, and bacterial survival and neutrophil lysis after phagocytosis in vitro was similar between these strains. Comparison of the cytolytic capacity of culture supernatants from wild-type and isogenic deletion strains lacking hlgABC, lukS/F-PV (encoding PVL), and/or lukDE revealed functional redundancy among two-component leukotoxins in vitro. These findings, along with a requirement of specific growth conditions for leukotoxin expression, may explain the apparent limited contribution of any single two-component leukotoxin to USA300 immune evasion and virulence

    Association between Dopamine Receptor D2 (DRD2) Variations rs6277 and rs1800497 and Cognitive Performance According to Risk Type for Psychosis : A Nested Case Control Study in a Finnish Population Sample

    Get PDF
    Background There is limited research regarding the association between genes and cognitive intermediate phenotypes in those at risk for psychotic disorders. Methods We measured the association between established psychosis risk variants in dopamine D2 receptor (DRD2) and cognitive performance in individuals at age 23 years and explored if associations between cognition and these variants differed according to the presence of familial or clinical risk for psychosis. The subjects of the Oulu Brain and Mind Study were drawn from the general population-based Northern Finland 1986 Birth Cohort (NFBC 1986). Using linear regression, we compared the associations between cognitive performance and two candidate DRD2 polymorphisms (rs6277 and rs1800497) between subjects having familial (n=61) and clinical (n=45) risk for psychosis and a random sample of participating NFBC 1986 controls (n=74). Cognitive performance was evaluated using a comprehensive battery of tests at follow-up. Results Principal components factor analysis supported a three-factor model for cognitive measures. The minor allele of rs6277 was associated with poorer performance on a verbal factor (p=0.003) but this did not significantly interact with familial or clinical risk for psychosis. The minor allele of rs1800497 was associated with poorer performance on a psychomotor factor (p=0.038), though only in those at familial risk for psychotic disorders (interaction p=0.049). Conclusion The effect of two DRD2 SNPs on cognitive performance may differ according to risk type for psychosis, suggesting that cognitive intermediate phenotypes differ according to the type (familial or clinical) risk for psychosis.Peer reviewe

    Biomarkers of a five-domain translational substrate for schizophrenia and schizoaffective psychosis

    Get PDF

    Pattern formation outside of equilibrium

    Full text link

    Children with cerebral palsy have altered oscillatory activity in the motor and visual cortices during a knee motor task

    No full text
    The neuroimaging literature on cerebral palsy (CP) has predominantly focused on identifying structural aberrations within the white matter (e.g., fiber track integrity), with very few studies examining neural activity within the key networks that serve the production of motor actions. The current investigation used high-density magnetoencephalography to begin to fill this knowledge gap by quantifying the temporal dynamics of the alpha and beta cortical oscillations in children with CP (age=15.5±3 years; GMFCS levels II–III) and typically developing (TD) children (age=14.1±3 years) during a goal-directed isometric target-matching task using the knee joint. Advanced beamforming methods were used to image the cortical oscillations during the movement planning and execution stages. Compared with the TD children, our results showed that the children with CP had stronger alpha and beta event-related desynchronization (ERD) within the primary motor cortices, premotor area, inferior parietal lobule, and inferior frontal gyrus during the motor planning stage. Differences in beta ERD amplitude extended through the motor execution stage within the supplementary motor area and premotor cortices, and a stronger alpha ERD was detected in the anterior cingulate. Interestingly, our results also indicated that alpha and beta oscillations were weaker in the children with CP within the occipital cortices and visual MT area during movement execution. These altered alpha and beta oscillations were accompanied by slower reaction times and substantial target matching errors in the children with CP. We also identified that the strength of the alpha and beta ERDs during the motor planning and execution stages were correlated with the motor performance. Lastly, our regression analyses suggested that the beta ERD within visual areas during motor execution primarily predicted the amount of motor errors. Overall, these data suggest that uncharacteristic alpha and beta oscillations within visuomotor cortical networks play a prominent role in the atypical motor actions exhibited by children with CP. Keywords: Isometric, Lower extremity, Magnetoencephalography, Visio
    • …
    corecore