30 research outputs found

    Stable Hybrid Fuzzy Controller-based Architecture for Robotic Telesurgery Systems

    Get PDF
    Robotic surgery and remotely controlled teleoperational systems are on the rise. However, serious limitations arise on both the hardware and software side when traditional modeling and control approaches are taken. These limitations include the incomplete modeling of robot dynamics, tool–tissue interaction, human– machine interfaces and the communication channel. Furthermore, the inherent latency of long-distance signal transmission may endanger the stability of a robot controller. All of these factors contribute to the very limited deployment of real robotic telesurgery. This paper describes a stable hybrid fuzzy controller-based architecture that is capable of handling the basic challenges. The aim is to establish high fidelity telepresence systems for medical applications by easily handled modern control solution

    Liver Fibrosis-4 index indicates atrial fibrillation in acute ischemic stroke

    Get PDF
    BACKGROUND: Non-alcoholic fatty liver disease and particularly liver fibrosis is related to cardiovascular disease and may indicate an increased risk for atrial fibrillation (AF), but this association has not yet been systematically investigated in a cohort of ischemic stroke patients. METHODS: We analyzed data from a prospective single-center study enrolling all consecutive ischemic stroke patients admitted to our stroke unit over a one-year-period. All patients received a thorough etiological work-up. For evaluation of liver fibrosis, we determined the FIB-4 index, a well-established noninvasive liver fibrosis test. Laboratory results were analyzed from a uniform blood sample taken at stroke unit admission. RESULTS: Of 414 included patients (mean age 70.2 years, 57.7% male), FIB-4 indicated advanced liver fibrosis in 92 (22.2%). AF as the underlying stroke mechanism was present in 28.0% (large vessel disease: 25.6%, small vessel disease: 11.4%, cryptogenic: 29.2%). Patients with FIB-4 ≄2.67 had higher rates of AF (53.3% vs. 20.8%, p<0.001), this association remained significant after correction for established AF risk factors (Odds Ratio 2.53, 95% confidence interval 1.44-4.46, p=0.001). FIB-4 was further associated with worse functional outcome three months (p<0.001) and higher mortality four years post-stroke (p<0.02), but these relationships were no longer present after correction for age and initial stroke severity. Moreover, FIB-4 did not associate with long-term recurrent vascular events. CONCLUSIONS: Liver fibrosis assessed by the FIB-4 index is independently associated with AF in acute ischemic stroke patients. Further studies should evaluate whether adding the FIB-4 index to AF risk scores increases their precision

    Defining positioning in a core ontology for robotics

    Get PDF
    Unambiguous definition of spatial position and orientation has crucial importance for robotics. In this paper we propose an ontology about positioning. It is part of a more extensive core ontology being developed by the IEEE RAS Working Group on ontologies for robotics and automation. The core ontology should provide a common ground for further ontology development in the field. We give a brief overview of concepts in the core ontology and then describe an integrated approach for representing quantitative and qualitative position information.3-7 November 201

    A development of assistant surgical robot system based on surgical-operation-by-wire and hands-on-throttle-and-stick

    Get PDF
    BACKGROUND: Robot-assisted laparoscopic surgery offers several advantages compared with open surgery and conventional minimally invasive surgery. However, one issue that needs to be resolved is a collision between the robot arm and the assistant instrument. This is mostly caused by miscommunication between the surgeon and the assistant. To resolve this limitation, an assistant surgical robot system that can be simultaneously manipulated via a wireless controller is proposed to allow the surgeon to control the assistant instrument. METHODS: The system comprises two novel master interfaces (NMIs), a surgical instrument with a gripper actuated by a micromotor, and 6-axis robot arm. Two NMIs are attached to master tool manipulators of da Vinci research kit (dVRK) to control the proposed system simultaneously with patient side manipulators of dVRK. The developments of the surgical instrument and NMI are based on surgical-operation-by-wire concept and hands-on-throttle-and-stick concept from the earlier research, respectively. Tests for checking the accuracy, latency, and power consumption of the NMI are performed. The gripping force, reaction time, and durability are assessed to validate the surgical instrument. The workspace is calculated for estimating the clinical applicability. A simple peg task using the fundamentals of laparoscopic surgery board and an in vitro test are executed with three novice volunteers. RESULTS: The NMI was operated for 185 min and reflected the surgeon’s decision successfully with a mean latency of 132 ms. The gripping force of the surgical instrument was comparable to that of conventional systems and was consistent even after 1000 times of gripping motion. The reaction time was 0.4 s. The workspace was calculated to be 8397.4 cm(3). Recruited volunteers were able to execute the simple peg task within the cut-off time and successfully performed the in vitro test without any collision. CONCLUSIONS: Various experiments were conducted and it is verified that the proposed assistant surgical robot system enables collision-free and simultaneous operation of the dVRK’s robot arm and the proposed assistant robot arm. The workspace is appropriate for the performance of various kinds of surgeries. Therefore, the proposed system is expected to provide higher safety and effectiveness for the current surgical robot system

    Burden of intracerebral haemorrhage in Europe: forecasting incidence and mortality between 2019 and 2050

    Get PDF
    Background: Anticipating the burden of intracerebral haemorrhage is crucial for proactive management and building resilience against future health challenges. Prior forecasts are based on population demography and to a lesser extent epidemiological trends. This study aims to utilise selected modifiable risk factors and socio-demographic indicators to forecast the incidence and mortality of intracerebral haemorrhage in Europe between 2019 and 2050. Methods: Three intracerebral haemorrhage risk factors identified in the Global Burden of Diseases, Injuries, and Risk Factors study (GBD 2019)—high systolic blood pressure, high fasting plasma glucose, and high body mass index—were utilised to predict the risk-attributable fractions between 2019 and 2050. Disease burden not attributable to these risk factors was then forecasted using time series models (autoregressive integrated moving average [ARIMA]), incorporating the Socio-demographic Index (SDI) as an external predictor. The optimal parameters of ARIMA models were selected for each age-sex-country group based on the Akaike Information Criterion (AIC). Different health scenarios were constructed by extending the past 85th and 15th percentiles of annualised rates of change in risk factors and SDI across all location-years, stratified by age and sex groups. A decomposition analysis was performed to assess the relative contributions of population size, age composition, and intracerebral haemorrhage risk on the projected changes. Findings: Compared with observed figures in 2019, our analysis predicts an increase in the burden of intracerebral haemorrhage in Europe in 2050, with a marginal rise of 0.6% (95% uncertainty interval [UI], −7.4% to 9.6%) in incident cases and an 8.9% (−2.8% to 23.6%) increase in mortality, reaching 141.2 (120.6–166.5) thousand and 144.2 (122.9–172.2) thousand respectively. These projections may fluctuate depending on trajectories of the risk factors and SDI; worsened trends could result in increases of 16.7% (8.7%–25.3%) in incidence and 31.2% (17.7%–48%) in mortality, while better trajectories may lead to a 10% (16.4%–2.3%) decrease in intracerebral haemorrhage cases with stabilised mortality. Individuals aged ≄80 years are expected to contribute significantly to the burden, comprising 62.7% of the cases in 2050, up from 40% in 2019, and 72.5% of deaths, up from 50.5%. Country-wide variations were noted in the projected changes, with decreases in the standardised rates across all nations but varying crude rates. The largest relative reductions in counts for both incidence and mortality are expected in Latvia, Bulgaria, and Hungary—ranging from −38.2% to −32.4% and −37.3% to −30.2% respectively. In contrast, the greatest increases for both measures were forecasted in Ireland (45.7% and 74.4%), Luxembourg (45% and 70.7%), and Cyprus (44.5% and 74.2%). The modelled increase in the burden of intracerebral haemorrhage could largely be attributed to population ageing. Interpretation: This study provides a comprehensive forecast of intracerebral haemorrhage in Europe until 2050, presenting different trajectories. The potential increase in the number of people experiencing and dying from intracerebral haemorrhage could have profound implications for both caregiving responsibilities and associated costs. However, forecasts were divergent between different scenarios and among EU countries, signalling the pivotal role of public health initiatives in steering the trajectories. Funding: TheEuropean Union's Horizon 2020 Research and Innovation Programme under grant agreement No.754517. TheNational Institute for Health and Care Research (NIHR) under its Programme Grants forApplied Research (NIHR202339)

    East-West cooperation

    No full text

    Applied Ontologies and Standards for Service Robots

    No full text
    Service robotics is an emerging application area for human-centered technologies. The rise of household and personal assistance robots forecasts a human–robot collaborative society. One of the robotics community’s major task is to streamline development trends, work on the harmonization of taxonomies and ontologies, along with the standardization of terms, interfaces and technologies. It is important to keep the scientific progress and public understanding synchronous, through efficient outreach and education. These efforts support the collaboration among research groups, and lead to widely accepted standards, beneficial for both manufacturers and users. This article describes the necessity of developing robotics ontologies and standards focusing on the past and current research efforts. In addition, the paper proposes a roadmap for service robotics ontology development. The IEEE Robotics & Automation Society is sponsoring the working group Ontologies for Robotics and Automation. The efforts of the Working group are presented here, aiming to connect the cutting edge technology with the users of these services—the general public
    corecore