11 research outputs found

    Progesterone induces apoptosis of insulin-secreting cells: insights into the molecular mechanism

    No full text
    Progesterone has been associated with the development of gestational diabetes (GD) due to the enhancement of insulin resistance. As b-cell apoptosis participates in type 1 and type 2 diabetes pathophysiology, we proposed the hypothesis that progesterone might contribute to the development of GD through a mechanism that also involves b-cell death. To address this question, RINm5F insulin-producing cells were incubated with progesterone (25-100 mM), in the presence or absence of a-tocopherol (40 mM). After 24 or 48 h, membrane integrity andDNA fragmentation were analyzed by flow cytometry. Caspase activity was used to identify the mode of cell death. the involvement of endoplasmic reticulum stress in the action of progesterone was investigated by western blotting. Oxidative stress was measured by 2', 7'-dichlorofluorescein diacetate (DCFDA) oxidation. Isolated rat islets were used in similar experiments in order to confirm the effect of progesterone in primary b-cells. Incubation of RINm5F cells with progesterone increased the number of cells with loss of membrane integrity and DNA fragmentation. Progesterone induced generation of reactive species. Pre-incubation with a-tocopherol attenuated progesterone-induced apoptosis. Western blot analyses revealed increased expression of CREB2 and CHOP in progesteronetreated cells. Progesterone caused apoptotic death of rat islet cells and enhanced generation of reactive species. Our results show that progesterone can be toxic to pancreatic b-cells through an oxidative-stress-dependent mechanism that induces apoptosis. This effect may contribute to the development of GD during pregnancy, particularly under conditions that require administration of pharmacological doses of this hormone

    Reactive oxygen and nitrogen species generation, antioxidant defenses, and β-cell function: a critical role for amino acids

    No full text
    Growing evidence indicates that the regulation of intracellular reactive oxygen species (ROS) and reactive nitrogen species (RNS) levels is essential for maintaining normal β-cell glucose responsiveness. While long-term exposure to high glucose induces oxidative stress in β cells, conflicting results have been published regarding the impact of ROS on acute glucose exposure and their role in glucose stimulated insulin secretion (GSIS). Although β cells are considered to be particularly vulnerable to oxidative damage, as they express relatively low levels of some peroxide-metabolizing enzymes such as catalase and glutathione (GSH) peroxidase, other less known GSH-based antioxidant systems are expressed in β cells at higher levels. Herein, we discuss the key mechanisms of ROS/RNS production and their physiological function in pancreatic β cells. We also hypothesize that specific interactions between RNS and ROS may be the cause of the vulnerability of pancreatic β cells to oxidative damage. In addition, using a hypothetical metabolic model based on the data available in the literature, we emphasize the importance of amino acid availability for GSH synthesis and for the maintenance of β-cell function and viability during periods of metabolic disturbance before the clinical onset of diabetes
    corecore