1,928 research outputs found

    Decriminalizing Delinquency: The Effect of Raising the Age of Majority on Juvenile Recidivism

    Get PDF
    In the last decade, a number of states have expanded the jurisdiction of their juvenile courts by increasing the maximum age to 18. Proponents argue that these expansions reduce crime by increasing access to the beneficial features of the juvenile justice system. Critics counter that the expansions risk increasing crime by reducing deterrence. In 2010, Illinois raised the maximum age for juvenile court for offenders who commit a misdemeanor. By examining the effect of this law on juvenile offenders in Chicago, this paper provides the first empirical estimates of the consequences of recent legislative activity to raise the age of criminal majority. Applying a difference-in-differences design with multiple control groups, we find little evidence of an effect. Our results suggest that—contrary to the expectations of both advocates and opponents— increasing the maximum age for juvenile court does not affect juvenile recidivism

    Nonlinear denoising of transient signals with application to event related potentials

    Full text link
    We present a new wavelet based method for the denoising of {\it event related potentials} ERPs), employing techniques recently developed for the paradigm of deterministic chaotic systems. The denoising scheme has been constructed to be appropriate for short and transient time sequences using circular state space embedding. Its effectiveness was successfully tested on simulated signals as well as on ERPs recorded from within a human brain. The method enables the study of individual ERPs against strong ongoing brain electrical activity.Comment: 16 pages, Postscript, 6 figures, Physica D in pres

    Suppression of biodynamic interference in head-tracked teleoperation

    Get PDF
    The utility of helmet-tracked sights to provide pointing commands for teleoperation of cameras, lasers, or antennas in aircraft is degraded by the presence of uncommanded, involuntary heat motion, referred to as biodynamic interference. This interference limits the achievable precision required in pointing tasks. The noise contributions due to biodynamic interference consists of an additive component which is correlated with aircraft vibration and an uncorrelated, nonadditive component, referred to as remnant. An experimental simulation study is described which investigated the improvements achievable in pointing and tracking precision using dynamic display shifting in the helmet-mounted display. The experiment was conducted in a six degree of freedom motion base simulator with an emulated helmet-mounted display. Highly experienced pilot subjects performed precision head-pointing tasks while manually flying a visual flight-path tracking task. Four schemes using adaptive and low-pass filtering of the head motion were evaluated to determine their effects on task performance and pilot workload in the presence of whole-body vibration characteristic of helicopter flight. The results indicate that, for tracking tasks involving continuously moving targets, improvements of up to 70 percent can be achieved in percent on-target dwelling time and of up to 35 percent in rms tracking error, with the adaptive plus low-pass filter configuration. The results with the same filter configuration for the task of capturing randomly-positioned, stationary targets show an increase of up to 340 percent in the number of targets captured and an improvement of up to 24 percent in the average capture time. The adaptive plus low-pass filter combination was considered to exhibit the best overall display dynamics by each of the subjects

    Longitudinal Aerodynamic Characteristics of a Four-Propeller Deflected Slipstream VTOL Model Including the Effects of Ground Proximity

    Get PDF
    Results are presented of a wind-tunnel investigation of the longitudinal stability, control, and performance characteristics of a model of a four-propeller deflected-slipstream VTOL airplane in the transition speed range. These results indicate that steady level-flight transition and descending flight-path angles up to 7 or 8 deg. out of the region of ground effect can be accomplished without wing stall being encountered. In general, the pitching moments out of ground proximity can be adequately trimmed by programming the stabilizer incidence to increase with increasing flap deflection, except for a relatively large diving moment in the hovering condition. The deflection of the slipstream onto the horizontal tail in proximity of the ground substantially increases the diving moment in hovering, unless the tail is set at a large nosedown incidence

    The Current and Evolving Landscape of First-Line Treatments for Advanced Renal Cell Carcinoma

    Get PDF
    Agents targeting the vascular endothelial growth factor (VEGF) and its receptors (VEGFRs), as well as the mammalian target of rapamycin (mTOR) and immune checkpoint receptor programmed death 1 (PD-1) signaling pathway have improved clinical outcomes for patients with advanced renal cell carcinoma (RCC). The VEGFR tyrosine kinase inhibitors (TKIs) pazopanib and sunitinib are FDA-approved first-line treatment options for advanced RCC; however, other treatment options in this setting are available, including the recently approved combination of nivolumab (anti-PD-1) and ipilimumab (anti-cytotoxic T-lymphocyte-associated protein-4 [CTLA-4]) for patients with intermediate or poor risk. Unfortunately, treatment guideline recommendations provide little guidance to aid first-line treatment choice. In addition, several ongoing randomized phase III trials of investigational first-line regimens may complicate the RCC treatment paradigm if these agents gain approval. This article reviews clinical trial and real-world evidence for currently approved and investigational first-line treatment regimens for advanced RCC and provides clinical evidence to aid first-line treatment selection. Implications for Practice: Vascular endothelial growth factor receptor tyrosine kinase inhibitors are approved by the U.S. Food and Drug Administration as first-line treatment options for advanced renal cell carcinoma; however, the treatment paradigm is rapidly evolving. The combination of nivolumab plus ipilimumab was recently approved for intermediate- and poor-risk patients, and other combination strategies and novel first-line agents will likely be introduced soon

    Pathological regional blood flow in opiate-dependent patients during withdrawal: A HMPAO-SPECT study

    Get PDF
    The aims of the present study were to investigate regional cerebral blood flow (rCBF) in heroin-dependent patients during withdrawal and to assess the relation between these changes and duration of heroin consumption and withdrawal data. The rCBF was measured using brain SPECT with Tc-99m-HMPAO in 16 heroin-dependent patients during heroin withdrawal. Thirteen patients received levomethadone at the time of the SPECT scans. The images were analyzed both visually and quantitatively, a total of 21 hypoperfused brain regions were observed in 11 of the 16 patients. The temporal lobes were the most affected area, hypoperfusions of the right and left temporal lobe were observed in 5 and 5 patients, respectively. Three of the patients had a hypoperfusion of the right frontal lobe, 2 patients showed perfusion defects in the left frontal lobe, right parietal lobe and left parietal lobe. The results of the quantitative assessments of the rCBF were consistent with the results of the qualitative findings. The stepwise regression analysis showed a significant positive correlation (r = 0.54) between the dose of levomethadone at the time of the SPECT scan and the rCBF of the right parietal lobe. Other significant correlations between clinical data and rCBF were not found. The present results suggest brain perfusion abnormalities during heroin withdrawal in heroin-dependent patients, which are not due to the conditions of withdrawal

    Ubiquitin and AP180 Regulate the Abundance of GLR-1 Glutamate Receptors at Postsynaptic Elements in C. elegans

    Get PDF
    AbstractRegulated delivery and removal of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors (GluRs) from postsynaptic elements has been proposed as a mechanism for regulating synaptic strength. Here we test the role of ubiquitin in regulating synapses that contain a C. elegans GluR, GLR-1. GLR-1 receptors were ubiquitinated in vivo. Mutations that decreased ubiquitination of GLR-1 increased the abundance of GLR-1 at synapses and altered locomotion behavior in a manner that is consistent with increased synaptic strength. By contrast, overexpression of ubiquitin decreased the abundance of GLR-1 at synapses and decreased the density of GLR-1-containing synapses, and these effects were prevented by mutations in the unc-11 gene, which encodes a clathrin adaptin protein (AP180). These results suggest that ubiquitination of GLR-1 receptors regulates synaptic strength and the formation or stability of GLR-1-containing synapses
    • …
    corecore