84 research outputs found

    University of Dayton\u27s Endowment Growth Earns Ninth Spot Among U.S. Catholic Universities

    Get PDF
    News release announces Thomas E. Burkhardt\u27s comments on the University of Dayton\u27s endowment growth

    Quantile Motion and Tunneling

    Full text link
    The concepts of quantile position, trajectory, and velocity are defined. For a tunneling quantum mechanical wave packet, it is proved that its quantile position always stays behind that of a free wave packet with the same initial parameters. In quantum mechanics the quantile trajectories are mathematically identical to Bohm's trajectories. A generalization to three dimensions is given.Comment: 13 pages, LaTeX, elsart, 3 ps figures, submitted to Phys. Lett.

    Modeling of field singularities at dielectric edges using grid based methods

    Get PDF
    Electric field singularities at sharp metallic edges or at a dielectric contact line can be described analytically by asymptotic expressions. The a priori known form of the field distribution in the vicinity of these edges can be used to construct numerical methods with improved accuracy. This contribution focuses on a modified Finite Integration Technique and on a Discontinuous Galerkin Method with singular approximation functions. Both methods are able to handle field singularities at perfectly electric conducting as well as at dielectric edges. The numerical accuracy of these methods is investigated in a number of simulation examples including static and dynamic field problems

    Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    Get PDF
    The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10  ns) proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC) code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D) electromagnetic PIC code

    Design and Fabrication Concepts of a Compact Undulator with Laser-Structured 2G-HTS Tapes

    Get PDF
    To produce small-scale high-field undulators for table-top free electron lasers (FELs), compact designs have been proposed using high temperature superconducting (HTS) tapes, which show both large critical current densities and high critical magnetic fields with a total tape thickness of about 50 μm and a width of up to 12 mm. Instead of winding coils, a meander structure can be laser-scribed directly into the superconductor layer, guiding the current path on a quasi-sinusoidal trajectory. Stacking pairs of such scribed tapes allows the generation of the desired sinusoidal magnetic fields above the tape plane, along the tape axis. Two practically feasible designs are presented, which are currently under construction at KIT: A coil concept wound from a single structured tape with a length of 15 m, which is a progression of a design that has been presented already in the past, as well as a novel stacked and soldered design, made from 25 cm long structured tapes, soldered in a zig-zag-pattern. In this contribution the designs are briefly recapped and the experimental progress is presented

    Patient-specific RF safety assessment in MRI: Progress in creating surface-based human head and shoulder models

    No full text
    The interaction of electromagnetic (EM) fields with the human body during magnetic resonance imaging (MRI) is complex and subject specific. MRI radiofrequency (RF) coil performance and safety assessment typically includes numerical EM simulations with a set of human body models. The dimensions of mesh elements used for discretization of the EM simulation domain must be adequate for correct representation of the MRI coil elements, different types of human tissue, and wires and electrodes of additional devices. Examples of such devices include those used during electroencephalography, transcranial magnetic stimulation, and transcranial direct current stimulation, which record complementary information or manipulate brain states during MRI measurement. The electrical contact within and between tissues, as well as between an electrode and the skin, must also be preserved. These requirements can be fulfilled with anatomically correct surface-based human models and EM solvers based on unstructured meshes. Here, we report (i) our workflow used to generate the surface meshes of a head and torso model from the segmented AustinMan dataset, (ii) head and torso model mesh optimization for three-dimensional EM simulation in ANSYS HFSS, and (iii) several case studies of MRI RF coil performance and safety assessment

    Controlling waves in space and time for imaging and focusing in complex media

    Get PDF
    In complex media such as white paint and biological tissue, light encounters nanoscale refractive-index inhomogeneities that cause multiple scattering. Such scattering is usually seen as an impediment to focusing and imaging. However, scientists have recently used strongly scattering materials to focus, shape and compress waves by controlling the many degrees of freedom in the incident waves. This was first demonstrated in the acoustic and microwave domains using time reversal, and is now being performed in the optical realm using spatial light modulators to address the many thousands of spatial degrees of freedom of light. This approach is being used to investigate phenomena such as optical super-resolution and the time reversal of light, thus opening many new avenues for imaging and focusing in turbid medi

    Adaptive tip-enhanced nano-spectroscopy

    Get PDF
    Tip-enhanced nano-spectroscopy, such as tip-enhanced photoluminescence (TEPL) and tip-enhanced Raman spectroscopy (TERS), generally suffers from inconsistent signal enhancement and difficulty in polarization-resolved measurement. To address this problem, we present adaptive tip-enhanced nano-spectroscopy optimizing the nano-optical vector-field at the tip apex. Specifically, we demonstrate dynamic wavefront shaping of the excitation field to effectively couple light to the tip and adaptively control for enhanced sensitivity and polarization-controlled TEPL and TERS. Employing a sequence feedback algorithm, we achieve similar to 4.4x10(4)-fold TEPL enhancement of a WSe2 monolayer which is &gt;2x larger than the normal TEPL intensity without wavefront shaping. In addition, with dynamical near-field polarization control in TERS, we demonstrate the investigation of conformational heterogeneity of brilliant cresyl blue molecules and the controllable observation of IR-active modes due to a large gradient field effect. Adaptive tip-enhanced nano-spectroscopy thus provides for a systematic approach towards computational nanoscopy making optical nano-imaging more robust and widely deployable. Tip-enhanced nano-spectroscopy suffers from inconsistent signal and difficulty in polarization-resolved measurement. Here, the authors present adaptive tip-enhanced nano-spectroscopy, which enables the additional signal enhancement and near-field polarization control via dynamic wavefront shaping

    Simulation studies for the PITZ-Injector.

    No full text
    corecore