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Abstract. Electric field singularities at sharp metallic edges
or at a dielectric contact line can be described analytically by
asymptotic expressions. The a priori known form of the field
distribution in the vicinity of these edges can be used to con-
struct numerical methods with improved accuracy. This con-
tribution focuses on a modified Finite Integration Technique
and on a Discontinuous Galerkin Method with singular ap-
proximation functions. Both methods are able to handle field
singularities at perfectly electric conducting as well as at di-
electric edges. The numerical accuracy of these methods is
investigated in a number of simulation examples including
static and dynamic field problems.

1 Introduction

One of the fundamental principles of electrodynamics states
that the electromagnetic field energy within a finite domain
is finite. This remains valid even when the electromagnetic
field within the domain becomes singular as may be the case
at perfectly conducting edges and at dielectric contact lines.
Electromagnetic field singularities are restricted, according
to the finite energy principle, to be no stronger thanρ−1+χ ,
whereχ > 0 andρ is the distance from the edge. Asymptotic
expressions for the singular fields at a perfectly conducting
edge have been early presented in the literature (Meixner,
1972; Hurd, 1976). More than a decade later (Olyslager,
1994), singular field solutions for the general case of a con-
tact edge between a number of dielectric and/or magnetic
materials were found.

The idea of using the a priori known asymptotic behavior
of singular fields in numerical simulations to improve nu-
merical accuracy appears natural. This approach has been
proposed by several authors in the context of different dis-
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cretization methods. InMur (1981) singular correction terms
are incorporated into the Finite Difference Time Domain
(FDTD) method for the time domain modeling of high fre-
quency problems, see alsoBeilenhoff and Heinrich(1993),
Przybyszewski and Mrozowski(1998). In the context of Fi-
nite Element Methods (FEM), several approaches based on
the use of specialized scalar and vector basis functions in-
corporating the singular field behavior have been proposed
(Webb, 1988; Graglia and Lombardi, 2004). Recent develop-
ments include the Extended Finite Element Method (XFEM)
(Moës et al., 1999) and the Partition of Unity Finite Element
Method (PUFEM) (Melenk and Babǔska, 1996).

The main difficulty with most of the discretization meth-
ods using singularity correction techniques is the increased
numerical and implementation complexity. This is, e.g., the
case for the FEM where specialized singular functions, full-
filling global continuity conditions, must be used in the ap-
proximation. The continuity condition imposes an impor-
tant constraint which limits the flexibility and, as indicated
by numerical results (Chahine et al., 2006), the accuracy of
the method. The application of this approach for geometri-
cally complicated problems (e.g. for sharp edges interfacing
at several dielectric and perfectly conducting domains) is dif-
ficult. Furthermore, from the numerical point of view, it may
be advantageous to apply a standard discretization method
which includes a simple to implement (probably less accu-
rate but numerically more efficient) technique for singular
field correction.

In this contribution, two new numerical approaches to han-
dle field singularities are proposed. The first one consists
in a modification of the Finite Integration Technique (FIT)
(Weiland, 1977) for right angle corner edges in Cartesian
grid problems. The second approach uses a flexible singular
basis approximation on unstructured grids based on the Dis-
continuous Galerkin (DG) method. The numerical accuracy
of these approaches is investigated for a number of singular
field problems with different types of field singularities.
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Fig. 1. (a)FIT Scheme: The grid flux
__
d i is defined on the dual Grid

G̃, the grid voltage_e i corresponds to the primary gridG. (b) Cor-
rection area: All grid edges within a radiusr are corrected. The
corrected edges are marked with an arrow.

2 Singular field solutions

In the direct vicinity of edges of perfectly conducting – or di-
electric wedges, the asymptotic form of the electromagnetic
field solution is given by

Eρ ≈ a0(ϕ)ρt−1
; Eϕ ≈ b0(ϕ)ρt−1

; Ez ≈ c0(ϕ)ρt−1 (1)

Hρ ≈ α0(ϕ)ρt−1
; Hϕ ≈ β0(ϕ)ρt−1

; Hz ≈ γ0(ϕ)ρt−1. (2)

The singularity indext obeys the edge condition and has to
be in the ranget ∈ (0,1). It is possible to determinet exactly.
A simple analytical procedure to computet in the general
case of a contact edge interfacing to a number of dielectric,
magnetic and perfectly conducting materials can be found in
(Olyslager, 1994).

3 FIT with singularity correction

The numerical field unknowns in the FIT formulation for
electrostatics problems are given by the electric grid voltages
_e and dielectric grid fluxes

__
d defined by

_e =

∫
L

E ds and
__
d =

∫ ∫
Ã

D dA, (3)

respectively. At the discrete grid level, the relation between
these quantities needs to be approximated by the matrix
equation
__
d = M ε;FIT

_e, (4)

whereM ε;FIT is the permittivity matrix of the FIT formula-
tion. In the case of staggered Cartesian grids (see Fig.1a), a
typical approximation forM ε;FIT consists in a diagonal matrix
with entries(
Mε;FIT

)
k
:=

1ỹ1̃z

1x
ε, (5)

corresponding to the one-to-one relation between the k-th
voltage_e and the k-th flux

__
d on the grid. In Eq. (5), 1ỹ and

1̃z are the dual grid lengths in y- and z-directions (faceÃ),
respectively, and1x is the primary grid length in x-direction.
In the case of singular field problems, it has been early real-
ized that approximation (5) leads to an extremely slow nu-
merical convergence. The overall numerical accuracy, even
at grid points far away from sharp metallic or dielectric edges
is drastically reduced compared to regular field problems. A
new variant of a singular field correction approach has re-
cently been proposed in the context of FIT (Classen et al.,
2010). Hereby, the idea is to derive a modified permittivity
matrix by using the singular field behavior (1) in both inte-
gral expressions (3). Thus, instead of using the purely geo-
metrical approximation (5), the modified coefficients in the
material matrix (for each dual pair of edges and faces in the
grid) become

εak
=

__
dak

_eak

= ε1̃z

∫
1ỹ

Ex(x =
1x
2 ,y)dy∫

1x
Ex(x,y = 0)dx

=
(
Mε;FIT

)
k
Kk, (6)

where the correction factorKk involves a numerical integra-
tion of the asymptotic expressions (1). Note that in this ap-
proximation, the analytically known singularity index,t , is
used depending on geometry and on the electrical properties
of the materials adjacent to the edge. Furthermore, this cor-
rection can be applied also at grid points not lying on the sin-
gular edge but which are sufficiently close to be influenced
by the field singularity. The approach taken in this work is
to apply the correction (6) within a small sphere surrounding
the singular point (see Fig.1b). The radiusr of this sphere
represents a free parameter of the formulation. The permit-
tivity matrix M ε with singularity correction can be inserted
as usual in the discrete FIT equations, e.g., for electrostatics
as

S̃FITM ε;FIT(̃SFIT)
T v = q, (7)

where S̃ is the source operator,q are the volume charges
andv the nodal potentials. Note, however, that the same ap-
proach can be used to derive a corrected permeability matrix
for magnetic field and high frequency problems.

4 DG with singular basis functions

The local discontinuous Galerkin method is chosen in this
work because of its flexibility in the choice of approximation
spaces. Following the derivation byArnold et al.(2002), in
the electrostatic case, the potentialV and the electric field
E are approximated within every elementK of the mesh by
local approximation spacesP(K) and 6(K), respectively.
The standard choice isP(K) = Pp; the space of polyno-
mials of degree at mostp, and 6(K) = (Pp)2. Now, let
Vs(ρ,ϕ) = ρt9(ϕ) denote a function corresponding to the
asymptotic electric potential solution at the singular point.
Although being finite at every point,Vs is referred to as sin-
gular function due to its low regularity. The approximation
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Fig. 2. Simulation setup for a 2-D electrostatics problem with PEC
edge singularity. The exact potential solution for this problem is
given by the series (13).

spaces for all elements lying completely or partially inside
a region of radiusr around the singular point can be easily
enriched with additional basis functions of the typeVs. Let
< Vs > denote the space of scalar multiples ofVs, then for
these elements the modified local approximation spaces are
given by

P̃ (K) = Pp(K)+ < Vs

∣∣∣
K

>, (8)

6̃(K) = (Pp(K)+ < ∂xVs

∣∣∣
K

>)

×(Pp(K)+ < ∂yVs

∣∣∣
K

>). (9)

Note that since the DG approximation is inherently discon-
tinuous, the singular basis functions can be simply defined
according to the asymptotic field expressions (1). There is
no need to adapt these functions to a particular mesh in or-
der to fulfill the continuity condition as is the case for the
FEM. This flexibility represents also the main advantage of
the method for the solution of singular field problems.

Omitting details on the involved finite element spacesVh

and6h, the numerical fluxes are defined as

v̂K = {vh}, (10)

τ̂K = {τh}−C11JvhK. (11)

In Eqs. (10), (11), vh ∈ Vh andτh ∈ 6h approximate scalar
and vector quantities, respectively. Furthermore,{·} denotes
the mean value andJ·K the jump whereasC11 is a suitably
chosen stabilization parameter, see alsoCastillo et al.(2000).

For the numerical integration of terms involving singular-
ities, higher order (or even adaptive) quadrature rules should
be used. Using this approximation procedure, the discrete
DG equations can be obtained as a matrix equation which is
formally similar to Eq. (7):

(SDGM ε;DG(SDG)
T

+CDG)v = q, (12)

whereSDG, M ε;DG andv are the DG counterparts of the source,
the permittivity matrix and the potential, respectively, and
CDG is a stabilization matrix.

FIT no cor.

FIT stand. cor.

FIT new cor.

FIT new cor. r=0.03m

FIT new cor. r=0.05m

10
-2

10
-1

10
-5

10
-4

10
-3

10
-2

hmax

||
V F

IT
-V

e
xa

c
t||

2nd order

¥

Fig. 3. Maximum electrical potential error for the PEC edge prob-
lem using FIT.

5 Numerical results

The FIT edge correction approach and the DG with singu-
lar basis functions are validated for a number of simulation
setups.

5.1 PEC corner singularity

First tests are performed using a 2-D electrostatics problem
containing a sharp perfectly conducting edge. The param-
eters in Fig.2 are chosen as:a = 1 m, b = 0.5 m, V0 = 1 V,
α = π/2 and the boundary values at the surrounding box with
edge lengthb are imprinted using the potential:

V (ρ,ϕ) = V0+
∑

∞

n=0Enρ
π(2n+1)

β sin
(

π(2n+1)
β

ϕ
)
. (13)

Equation (13) represents the exact solution of the problem
with β = 2π −α, andEn given by

En =
−4V0

a
π(2n+1)

β π(2n+1)

.

The singularity indext and the functions given in Eqs. (1)
and (2), can be derived using the general formalism by
Olyslager or – in this special case – directly by the deriva-
tive of Eq. (13). The problem is discretized with rectangles
for the FIT and triangles for the DG method, respectively.

The FIT results for different values of the parameterr are
plotted in Fig.3. The maximum norm, comparing numerical
results to analytic results at the grid points, is plotted over the
mesh step sizehmax. The green curve (+) shows the results of
standard FIT without edge correction while the purple curve
(©) represents the results using a standard edge correction
scheme as given inBeilenhoff and Heinrich(1993). Obvi-
ously the total error is decreased, although the order of con-
vergence is not improved. The blue curve (∗) represents the
new edge correction approach which is only applied to the
grid edges directly located at the singular point (as it is also
done in the standard correction scheme). In this case, the re-
sults can be further improved. It can be clearly observed in
these cases that no second order convergence can be achieved
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Fig. 4. Maximum electrical potential error for the PEC edge prob-
lem using DG.
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Fig. 5. Numerical error (electrical capacity) for the dielectric edge
problem using FIT.

as it would be the case for a regular field problem. On the
other hand, correcting all grid edges lying at least partially
inside a fixed area with radiusr (see Fig.1b), second order
convergence can be restored. As observed in Fig.3, in order
for this to occur, the edge length has to become smaller than
the parameterr.

The results of the DG method with singular basis func-
tions and first order polynomials are depicted in Fig.4. Also
here, a fixed area of enrichment with singular basis functions
is needed to obtain a higher order of convergence. Using
singular basis functions only in elements having a common
point with the singularity (blue curve) (∗), does not improve
the order of convergence, see alsoLaborde et al.(2005).

5.2 Dielectric edge singularity

The setup consists in a dielectric loaded capacitor (see
Fig. 1b). The total extension of the domain is 0.5 m in y-
and x-direction. At the top and bottom of the domain Neu-
mann boundary conditions are imposed; on the left and right
Dirichlet boundary conditions with the fixed potentials±1V

are applied. The dielectric inset has the permittivityεr = 10.
In this case the singularity is given byVs(ρ,ϕ) = ρt9(ϕ),
with t ≈ 0.73.
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Fig. 6. Numerical error (electrical capacity) for the dielectric edge
problem using DG.

It should be mentioned that both methods necessitate a
slight modification when different materials surrounding the
edge are present. The angular part of the singular function
9(ϕ) can be written in the form

9(ϕ) = Csin(tϕ)+cos(tϕ), (14)

where the constantC, depending on the permittivities, the
angular material distribution and the singularity index is dif-
ferent in each material. Therefore the singularity correction
and the singular approximation functions have to be adapted
to each material, refer toOlyslager(1994) for details.

We compare the numerically computed electrical capacity
to the one calculated using a very fine mesh and a higher or-
der FEM simulation. The FIT results are presented in Fig.5;
the DG results for first order polynomials in Fig.6. In both
cases, the convergence behavior concerning mesh refinement
is identical to the previous example. These results indicate
that the described corrections are well suited for treating di-
electric type singularities just as in the PEC case.

5.3 Dielectric contact singularity

A more complicated setup concerns singularities arising at
the contact line between three or more dielectric materials.
To avoid additional effects from a non-conformal geometry
discretization in a rectangular FIT grid, this setup is investi-
gated only for the DG method on a triangular grid. The case
of three dielectric wedges, with relative permittivitiesε1 = 1,
ε2 = 80 andε3 = 4 is depicted in Fig.7. For illustration pur-
poses, also an exemplary triangular grid as well as the region
used for DG singular basis enrichment are shown. The sin-
gularity is given byVs(ρ,ϕ) = ρt9(ϕ), with t ≈ 0.61, cor-
responding to a contact angleα = 120◦. The boundary con-
ditions are identical to the previous example anda = 0.5 m.
The reference result is obtained by a 2-D FEM calculation
using a heavily refined mesh in the vicinity of the contact
line. Also in this case, numerical results indicate that the er-
ror in the electric potential converges at second order when
the DG approach with singular basis functions (within a fixed
region) and first order polynomials is used (see Fig.8).
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Fig. 7. Domain triangulation and radius of influence for the DG
method with singular basis functions.
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Fig. 8. Numerical error for the triple dielectric edge problem using
DG.

5.4 3-D eigenvalue problem with reentrant corner

The last example is the solution of the curl-curl eigenvalue
problem for a cavity with reentrant corner. The structure is
a hollow, PEC bounded rectangular box (see Fig.9) (x =

0..1 m, y = 0..0.7 m, z = 0..0.8 m) in which a PEC rect-
angular box is inserted (x = 0..0.5 m, y = 0..0.35 m, z =

0..0.8 m). In this setup only the first with the singular point
corresponding grid edges are corrected. The implementation
of an influence region for three-dimensional problems is part
of current work. However, in this case both material matrices
(Mµ;FIT,M ε;FIT) have to be corrected to solve the curl curl
eigenvalue equation:

M−1
ε;FIT

(CFIT)
T M−1

µ;FIT
CFIT

_e = ω2_e, (15)

whereCFIT is the discrete curl matrix of FIT. The convergence
of the first resonance frequency with respect to the grid size is
shown in Fig.10. As observed in the previous examples the
standard correction technique (©) and the new edge correc-
tion (∗) improve the accuracy, meanwhile the order of con-
vergence remains unchanged.
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Fig. 9. Arrowplot of the electric field distribution for the eigenvalue
problem.
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Fig. 10. Convergence of the resonance frequency for the singular
eigenvalue problem using FIT.

6 Conclusions

Two numerical approaches for the simulation of singular
field problems have been presented. The first consists in a
special modification of the material matrices of FIT, whereas
the second represents a DG method with singular basis func-
tions. Both methods lead to an immense improvement in nu-
merical accuracy in the case of PEC as well as for dielectric
edge singularities. Numerical simulations for a number of
setups with typical electromagnetic field singularities show,
in particular, that the optimal convergence order for regular
field problems can be fully recovered when the respective
singular corrections are applied within a small but finite re-
gion of influence surrounding the singularity.
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cations AËU, Devices and Fields, 31, 116–120, 1977.

Adv. Radio Sci., 9, 39–44, 2011 www.adv-radio-sci.net/9/39/2011/


