173 research outputs found

    Boron Nitride Nanotubes for Space Radiation Shielding

    Get PDF
    Soon after Armstrong`s left foot touched the surface of the moon in July 21, 1969, Mars seemed to be the next target for any future human space explorations. Although during these forty five years, advances in different fields of science like materials, electronics and space resulted in regular presence of satellites, space explorers and even human in space stations but any long travel including mission to the Mars has been limited by space radiation due to its effect on materials, electronics and astronauts

    Prognostic significance of vascular endothelial growth factor expression in human ovarian carcinoma

    Get PDF
    The influence of vascular endothelial growth factor (VEGF) expression and microvessel density (MVD) on prognosis and the relationship between VEGF expression and MVD in ovarian carcinoma are not well defined. We studied VEGF expression in parallel with MVD by immunohistochemistry in 94 ovarian tumours (64 malignant, 13 borderline, and 17 benign) and correlated the results with the clinicopathologic prognostic factors of the disease to clarify their significance in this disease. Assessment of VEGF mRNA isoforms by RT-PCR was also performed. Of the malignant, borderline, and benign ovarian tumours respectively, two (3%), four (31%) and 16 (94%) were negative, 31 (48%), seven (54%) and one (6%) had low expressions, and 31 (48%), two (15%) and none (0%) had high expressions of VEGF. There were significant associations between the VEGF expression and disease stage (P = 0.002), histologic grade (P = 0.0004), and patient outcome (P = 0.0002). MVD did not correlate significantly with the clinicopathologic parameters. Likewise, no correlation was found between MVD and VEGF expression. The survival of patients with high VEGF expression was significantly worse than that of patients with low and negative VEGF expression (P = 0.0004). Multivariate analysis revealed that disease stage and VEGF expression were significant and independent prognostic indicators of overall survival time (P = 0.008 and P = 0.006 respectively). These findings suggest that in conjunction with the established clinicopathologic prognostic parameters of ovarian carcinoma, VEGF expression may enhance the predictability of patients at high risk for tumour progression who are potential candidates for further aggressive therapy. © 2000 Cancer Research Campaig

    Oncocytic carcinoma of parotid gland: a case report with clinical, immunohistochemical and ultrastructural features

    Get PDF
    BACKGROUND: Oncocytic carcinoma is an extremely rare neoplasm of the salivary glands. We report a case of oncocytic carcinoma arising in a parotid gland in a 66-year-old female. METHOD: An excisional biopsy of the parotid tumor was performed. The specimen was submitted for histology and after fixation in formalin solution and inclusion in paraffin, 3–5 μm sections were stained with hematoxylin and eosin for conventional evaluation and Periodic acid Schiff stain. Immunohistochemical studies were performed using antibodies against mitochondrial antigen, keratin, S-100, alpha-actin, vimentin, alpha-1-antichymotrypsin as well as an ultrastructural analysis was performed. RESULTS: Frozen sections revealed an infiltrative growth pattern and the diagnosis of a malignant epithelial lesion was made. Permanent sections stained with haematoxylin and eosin revealed a neoplasm that had replaced a wide area of the parotid gland and had invaded subcutaneous adipose tissue. Perineural invasion was evident, but vascular invasion was not found. Neoplastic elements were large, round or polyhedral cells and were arranged in solid sheets, islands and cords. The cytoplasm was abundant, eosinophilic and finely granular. The nuclei were large and located centrally or peripherally. The nucleoli were distinct and large. Periodic acid Schiff stain demonstrated a granular cytoplasm. Immunohistochemistry demonstrated mithochondrial antigen, keratin, and chymotrypsin immunoreactivity in the neoplastic cells. Ultrastructural analysis revealed numerous mitochondria packed into the cytoplasm of the neoplastic cells. Thus, the final diagnosis was that of oncocytic carcinoma of parotid gland. CONCLUSION: This neoplasm shows clinical, microscopical, histological and ultrastructural features of oncocytic carcinoma and this must be considered in the differential diagnosis of other proliferations in the parotid gland with abundant granular cytoplasm and metastatic oncocytic carcinomas

    Pharmacological screening using an FXN-EGFP cellular genomic reporter assay for the therapy of Friedreich ataxia

    Get PDF
    Copyright @ 2013 Li et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Friedreich ataxia (FRDA) is an autosomal recessive disorder characterized by neurodegeneration and cardiomyopathy. The presence of a GAA trinucleotide repeat expansion in the first intron of the FXN gene results in the inhibition of gene expression and an insufficiency of the mitochondrial protein frataxin. There is a correlation between expansion length, the amount of residual frataxin and the severity of disease. As the coding sequence is unaltered, pharmacological up-regulation of FXN expression may restore frataxin to therapeutic levels. To facilitate screening of compounds that modulate FXN expression in a physiologically relevant manner, we established a cellular genomic reporter assay consisting of a stable human cell line containing an FXN-EGFP fusion construct, in which the EGFP gene is fused in-frame with the entire normal human FXN gene present on a BAC clone. The cell line was used to establish a fluorometric cellular assay for use in high throughput screening (HTS) procedures. A small chemical library containing FDA-approved compounds and natural extracts was screened and analyzed. Compound hits identified by HTS were further evaluated by flow cytometry in the cellular genomic reporter assay. The effects on FXN mRNA and frataxin protein levels were measured in lymphoblast and fibroblast cell lines derived from individuals with FRDA and in a humanized GAA repeat expansion mouse model of FRDA. Compounds that were established to increase FXN gene expression and frataxin levels included several anti-cancer agents, the iron-chelator deferiprone and the phytoalexin resveratrol.Muscular Dystrophy Association (USA), the National Health and Medical Research Council (Australia), the Friedreich’s Ataxia Research Alliance (USA), the Brockhoff Foundation (Australia), the Friedreich Ataxia Research Association (Australasia), Seek A Miracle (USA) and the Victorian Government’s Operational Infrastructure Support Program

    Oridonin Could Inhibit Inflammation and T-cell Immunoglobulin and Mucin-3/Galectin-9 (TIM-3/Gal-9) Autocrine Loop in the Acute Myeloid Leukemia Cell Line (U937) as Compared to Doxorubicin

    Get PDF
    The T-cell immunoglobulin and mucin-3 (TIM-3)/galectin-9 (Gal-9) autocrine loop is an indispensable signaling in acute myeloid leukemia (AML) cells, which induces their self-renewal through activation of nuclear factor-kappa b (NF-kB) and β-catenin pathways. In this study, we evaluated the effects of oridonin and doxorubicin on the TIM-3/Gal-9 autocrine loop. We also evaluated oridonin anti-inflammatory and anti-cancer properties on U937 cells, as an AML cell line in comparison to doxorubicin as a common anthracycline drug for AML treatment. Cell counting kit-8 (CCK-8) was applied to evaluate the cytotoxicity of oridonin and doxorubicin on U937 cells and also to determine the impact of galectin-9 (Gal-9) on their proliferation. The effects of oridonin and doxorubicin on Gal-9, TIM-3, and interleukin-1β (IL-1β) gene expression were determined by real-time polymerase chain reaction (RT-PCR). The Gal-9 secretion level was measured by enzyme-linked immunosorbent assay (ELISA) and activation of NF-kB pathway was assessed by western blotting. In a dose-dependent manner, oridonin and doxorubicin were capable to eradicate U937 cells while Gal-9 expanded them. Following the treatment of U937 cells with oridonin, the expression of Gal-9, TIM-3, and IL-1β genes was down-regulated, and the Gal-9 secretion and NF-kB phosphorylation were diminished, whereas doxorubicin increased all of these factors. Doxorubicin is a common treatment agent in AML, but it may induce inflammation and up-regulate the TIM3/Gal-9 autocrine loop, consequently can enhance the possibility of disease relapse. Meanwhile, oridonin is capable to inhibit the essential signaling pathways in AML cells and reduce the inflammation and expansion of tumor cells and postpone AML recurrence

    Organization of Physical Interactomes as Uncovered by Network Schemas

    Get PDF
    Large-scale protein-protein interaction networks provide new opportunities for understanding cellular organization and functioning. We introduce network schemas to elucidate shared mechanisms within interactomes. Network schemas specify descriptions of proteins and the topology of interactions among them. We develop algorithms for systematically uncovering recurring, over-represented schemas in physical interaction networks. We apply our methods to the S. cerevisiae interactome, focusing on schemas consisting of proteins described via sequence motifs and molecular function annotations and interacting with one another in one of four basic network topologies. We identify hundreds of recurring and over-represented network schemas of various complexity, and demonstrate via graph-theoretic representations how more complex schemas are organized in terms of their lower-order constituents. The uncovered schemas span a wide range of cellular activities, with many signaling and transport related higher-order schemas. We establish the functional importance of the schemas by showing that they correspond to functionally cohesive sets of proteins, are enriched in the frequency with which they have instances in the H. sapiens interactome, and are useful for predicting protein function. Our findings suggest that network schemas are a powerful paradigm for organizing, interrogating, and annotating cellular networks

    Enhancement of metastatic ability by ectopic expression of ST6GalNAcI on a gastric cancer cell line in a mouse model

    Get PDF
    ST6GalNAcI is a sialyltransferase responsible for the synthesis of sialyl Tn (sTn) antigen which is expressed in a variety of adenocarcinomas including gastric cancer especially in advanced cases, but the roles of ST6GalNAcI and sTn in cancer progression are largely unknown. We generated sTn-expressing human gastric cancer cells by ectopic expression of ST6GalNAcI to evaluate metastatic ability of these cells and prognostic effect of ST6GalNAcI and sTn in a mouse model, and identified sTn carrier proteins to gain insight into the function of ST6GalNAcI and sTn in gastric cancer progression. A green fluorescent protein-tagged human gastric cancer cell line was transfected with ST6GalNAcI to produce sTn-expressing cells, which were transplanted into nude mice. STn-positive gastric cancer cells showed higher intraperitoneal metastatic ability in comparison with sTn-negative control, resulting in shortened survival time of the mice, which was mitigated by anti-sTn antibody administration. Then, sTn-carrying proteins were immunoprecipitated from culture supernatants and lysates of these cells, and identified MUC1 and CD44 as major sTn carriers. It was confirmed that MUC1 carries sTn also in human advanced gastric cancer tissues. Identification of sTn carrier proteins will help understand mechanisms of metastatic phenotype acquisition of gastric cancer cells by ST6GalNAcI and sTn

    Tumor-Like Stem Cells Derived from Human Keloid Are Governed by the Inflammatory Niche Driven by IL-17/IL-6 Axis

    Get PDF
    Alterations in the stem cell niche are likely to contribute to tumorigenesis; however, the concept of niche promoted benign tumor growth remains to be explored. Here we use keloid, an exuberant fibroproliferative dermal growth unique to human skin, as a model to characterize benign tumor-like stem cells and delineate the role of their "pathological" niche in the development of the benign tumor.Subclonal assay, flow cytometric and multipotent differentiation analyses demonstrate that keloid contains a new population of stem cells, named keloid derived precursor cells (KPCs), which exhibit clonogenicity, self-renewal, distinct embryonic and mesenchymal stem cell surface markers, and multipotent differentiation. KPCs display elevated telomerase activity and an inherently upregulated proliferation capability as compared to their peripheral normal skin counterparts. A robust elevation of IL-6 and IL-17 expression in keloid is confirmed by cytokine array, western blot and ELISA analyses. The altered biological functions are tightly regulated by the inflammatory niche mediated by an autocrine/paracrine cytokine IL-17/IL-6 axis. Utilizing KPCs transplanted subcutaneously in immunocompromised mice we generate for the first time a human keloid-like tumor model that is driven by the in vivo inflammatory niche and allows testing of the anti-tumor therapeutic effect of antibodies targeting distinct niche components, specifically IL-6 and IL-17.These findings support our hypothesis that the altered niche in keloids, predominantly inflammatory, contributes to the acquirement of a benign tumor-like stem cell phenotype of KPCs characterized by the uncontrolled self-renewal and increased proliferation, supporting the rationale for in vivo modification of the "pathological" stem cell niche as a novel therapy for keloid and other mesenchymal benign tumors

    Visualization of plasmid delivery to keratinocytes in mouse and human epidermis

    Get PDF
    The accessibility of skin makes it an ideal target organ for nucleic acid-based therapeutics; however, effective patient-friendly delivery remains a major obstacle to clinical utility. A variety of limited and inefficient methods of delivering nucleic acids to keratinocytes have been demonstrated; further advances will require well-characterized reagents, rapid noninvasive assays of delivery, and well-developed skin model systems. Using intravital fluorescence and bioluminescence imaging and a standard set of reporter plasmids we demonstrate transfection of cells in mouse and human xenograft skin using intradermal injection and two microneedle array delivery systems. Reporter gene expression could be detected in individual keratinocytes, in real-time, in both mouse skin as well as human skin xenografts. These studies revealed that non-invasive intravital imaging can be used as a guide for developing gene delivery tools, establishing a benchmark for comparative testing of nucleic acid skin delivery technologies
    corecore