493 research outputs found

    Destruction of long-range antiferromagnetic order by hole doping

    Full text link
    We study the renormalization of the staggered magnetization of a two-dimensional antiferromagnet as a function of hole doping, in the framework of the t-J model. It is shown that the motion of holes generates decay of spin waves into ''particle-hole'' pairs, which causes the destruction of the long-range magnetic order at a small hole concentration. This effect is mainly determined by the coherent motion of holes. The value obtained for the critical hole concentration, of a few percent, is consistent with experimental data for the doped copper oxide high-Tc superconductors.Comment: 12 pages, 2 figure

    The Frequency Dependent Conductivity of Electron Glasses

    Full text link
    Results of DC and frequency dependent conductivity in the quantum limit, i.e. hw > kT, for a broad range of dopant concentrations in nominally uncompensated, crystalline phosphorous doped silicon and amorphous niobium-silicon alloys are reported. These materials fall under the general category of disordered insulating systems, which are referred to as electron glasses. Using microwave resonant cavities and quasi-optical millimeter wave spectroscopy we are able to study the frequency dependent response on the insulating side of the metal-insulator transition. We identify a quantum critical regime, a Fermi glass regime and a Coulomb glass regime. Our phenomenological results lead to a phase diagram description, or taxonomy, of the electrodynamic response of electron glass systems

    Electrodynamics of a Coulomb Glass in n-type Silicon

    Full text link
    Optical measurements of the real and imaginary frequency dependent conductivity of uncompensated n-type silicon are reported. The experiments are done in the quantum limit, ω>kBT \hbar\omega > k_{B}T, across a broad doping range on the insulating side of the Metal-Insulator transition (MIT). The observed low energy linear frequency dependence shows characteristics consistent with theories of a Coulomb glass, but discrepancies exist in the relative magnitudes of the real and imaginary components. At higher energies we observe a crossover to a quadratic frequency dependence that is sharper than expected over the entire dopant range. The concentration dependence gives evidence that the Coulomb interaction energy is the relevant energy scale that determines this crossover.Comment: 5 pages, 4 figures; accepted for publication in Phys. Rev. Let

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    A Systems Approach for Tumor Pharmacokinetics

    Get PDF
    Recent advances in genome inspired target discovery, small molecule screens, development of biological and nanotechnology have led to the introduction of a myriad of new differently sized agents into the clinic. The differences in small and large molecule delivery are becoming increasingly important in combination therapies as well as the use of drugs that modify the physiology of tumors such as anti-angiogenic treatment. The complexity of targeting has led to the development of mathematical models to facilitate understanding, but unfortunately, these studies are often only applicable to a particular molecule, making pharmacokinetic comparisons difficult. Here we develop and describe a framework for categorizing primary pharmacokinetics of drugs in tumors. For modeling purposes, we define drugs not by their mechanism of action but rather their rate-limiting step of delivery. Our simulations account for variations in perfusion, vascularization, interstitial transport, and non-linear local binding and metabolism. Based on a comparison of the fundamental rates determining uptake, drugs were classified into four categories depending on whether uptake is limited by blood flow, extravasation, interstitial diffusion, or local binding and metabolism. Simulations comparing small molecule versus macromolecular drugs show a sharp difference in distribution, which has implications for multi-drug therapies. The tissue-level distribution differs widely in tumors for small molecules versus macromolecular biologic drugs, and this should be considered in the design of agents and treatments. An example using antibodies in mouse xenografts illustrates the different in vivo behavior. This type of transport analysis can be used to aid in model development, experimental data analysis, and imaging and therapeutic agent design.National Institutes of Health (U.S.) (grant T32 CA079443

    Solid-State Dynamic Nuclear Polarization at 263 GHz: Spectrometer Design and Experimental Results

    Get PDF
    Dynamic Nuclear Polarization (DNP) experiments transfer polarization from electron spins to nuclear spins with microwave irradiation of the electron spins for enhanced sensitivity in nuclear magnetic resonance (NMR) spectroscopy. Design and testing of a spectrometer for magic angle spinning (MAS) DNP experiments at 263 GHz microwave frequency, 400 MHz 1H frequency is described. Microwaves are generated by a novel continuous-wave gyrotron, transmitted to the NMR probe via a transmission line, and irradiated on a 3.2 mm rotor for MAS DNP experiments. DNP signal enhancements of up to 80 have been measured at 95 K on urea and proline in water–glycerol with the biradical polarizing agent TOTAPOL. We characterize the experimental parameters affecting the DNP efficiency: the magnetic field dependence, temperature dependence and polarization build-up times, microwave power dependence, sample heating effects, and spinning frequency dependence of the DNP signal enhancement. Stable system operation, including DNP performance, is also demonstrated over a 36 h period.National Institutes of Health (U.S.) (NIH grant EB-002804)National Institutes of Health (U.S.) (NIH grant EB-002026

    Electron transport in TiO2 probed by THz time-domain spectroscopy

    Get PDF
    Euan Hendry, F. Wang, J. Shan, T. F. Heinz, and Mischa Bonn, Physical Review B, Vol. 69, article 081101 (2004). "Copyright © 2004 by the American Physical Society."Electron transport in crystalline TiO2 (rutile phase) is investigated by frequency-dependent conductivity measurements using THz time-domain spectroscopy. Transport is limited by electron-phonon coupling, resulting in a strongly temperature-dependent electron-optical phonon scattering rate, with significant anisotropy in the scattering process. The experimental findings can be described by Feynman polaron theory within the intermediate coupling regime and allow for a determination of electron mobility

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Leray, M., Wilkins, L. G. E., Apprill, A., Bik, H. M., Clever, F., Connolly, S. R., De Leon, M. E., Duffy, J. E., Ezzat, L., Gignoux-Wolfsohn, S., Herre, E. A., Kaye, J. Z., Kline, D. I., Kueneman, J. G., McCormick, M. K., McMillan, W. O., O’Dea, A., Pereira, T. J., Petersen, J. M., Petticord, D. F., Torchin, M. E., Thurber, R. V., Videvall, E., Wcislo, W. T., Yuen, B., Eisen, J. A. . Natural experiments and long-term monitoring are critical to understand and predict marine host-microbe ecology and evolution. Plos Biology, 19(8), (2021): e3001322, https://doi.org/10.1371/journal.pbio.3001322.Marine multicellular organisms host a diverse collection of bacteria, archaea, microbial eukaryotes, and viruses that form their microbiome. Such host-associated microbes can significantly influence the host’s physiological capacities; however, the identity and functional role(s) of key members of the microbiome (“core microbiome”) in most marine hosts coexisting in natural settings remain obscure. Also unclear is how dynamic interactions between hosts and the immense standing pool of microbial genetic variation will affect marine ecosystems’ capacity to adjust to environmental changes. Here, we argue that significantly advancing our understanding of how host-associated microbes shape marine hosts’ plastic and adaptive responses to environmental change requires (i) recognizing that individual host–microbe systems do not exist in an ecological or evolutionary vacuum and (ii) expanding the field toward long-term, multidisciplinary research on entire communities of hosts and microbes. Natural experiments, such as time-calibrated geological events associated with well-characterized environmental gradients, provide unique ecological and evolutionary contexts to address this challenge. We focus here particularly on mutualistic interactions between hosts and microbes, but note that many of the same lessons and approaches would apply to other types of interactions.Financial support for the workshop was provided by grant GBMF5603 (https://doi.org/10.37807/GBMF5603) from the Gordon and Betty Moore Foundation (W.T. Wcislo, J.A. Eisen, co-PIs), and additional funding from the Smithsonian Tropical Research Institute and the Office of the Provost of the Smithsonian Institution (W.T. Wcislo, J.P. Meganigal, and R.C. Fleischer, co-PIs). JP was supported by a WWTF VRG Grant and the ERC Starting Grant 'EvoLucin'. LGEW has received funding from the European Union’s Framework Programme for Research and Innovation Horizon 2020 (2014-2020) under the Marie Sklodowska-Curie Grant Agreement No. 101025649. AO was supported by the Sistema Nacional de Investigadores (SENACYT, Panamá). A. Apprill was supported by NSF award OCE-1938147. D.I. Kline, M. Leray, S.R. Connolly, and M.E. Torchin were supported by a Rohr Family Foundation grant for the Rohr Reef Resilience Project, for which this is contribution #2. This is contribution #85 from the Smithsonian’s MarineGEO and Tennenbaum Marine Observatories Network.
    corecore