1,696 research outputs found
Phonon spectral function for an interacting electron-phonon system
Using exact diagonalzation techniques, we study a model of interacting
electrons and phonons. The spectral width of the phonons is found to be reduced
as the Coulomb interaction U is increased. For a system with two modes per
site, we find a transfer of coupling strength from the upper to the lower mode.
This transfer is reduced as U is increased. These results give a qualitative
explanation of differences between Raman and photoemission estimates of the
electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur
Electron-phonon interaction and antiferromagnetic correlations
We study effects of the Coulomb repulsion on the electron-phonon interaction
(EPI) in a model of cuprates at zero and finite doping. We find that
antiferromagnetic correlations strongly enhance EPI effects on the electron
Green's function with respect to the paramagnetic correlated system, but the
net effect of the Coulomb interaction is a moderate suppression of the EPI.
Doping leads to additional suppression, due to reduced antiferromagnetic
correlations. In contrast, the Coulomb interaction strongly suppresses EPI
effects on phonons, but the suppression weakens with doping.Comment: 4 pages and 5 figure
Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling
We study the influence of the lattice structure, the Jahn-Teller effect and
the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb).
The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60
(bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors
A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases)
the value Uc of the Coulomb integral at which the metal-insulator transition
occurs. There is an important partial cancellation between the Jahn-Teller
effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
Electron self-energy in A3C60 (A=K, Rb): Effects of t1u plasmon in GW approximation
The electron self-energy of the t1u states in A3C60 (A=K, Rb) is calculated
using the so-called GW approximation. The calculation is performed within a
model which considers the t1u charge carrier plasmon at 0.5 eV and takes into
account scattering of the electrons within the t1u band. A moderate reduction
(35 %) of the t1u band width is obtained.Comment: 4 pages, revtex, 1 figure more information at
http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
Pauli susceptibility of A3C60 (A=K, Rb)
The Pauli paramagnetic susceptibility of A3C60 (A= K, Rb) compounds is
calculated. A lattice quantum Monte Carlo method is applied to a multi-band
Hubbard model, including the on-site Coulomb interaction U. It is found that
the many-body enhancement of the susceptibility is of the order of a factor of
three. This reconciles estimates of the density of states from the
susceptibility with other estimates. The enhancement is an example of a
substantial many-body effect in the doped fullerenes.Comment: 4 pages, revtex, 2 figures, submitted to Phys. Rev. B more
information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene
Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics
We demonstrate how to identify which physical processes dominate the
low-energy spectral functions of correlated electron systems. We obtain an
unambiguous classification through an analysis of the equation of motion for
the electron self-energy in its charge, spin and particle-particle
representations. Our procedure is then employed to clarify the controversial
physics responsible for the appearance of the pseudogap in correlated systems.
We illustrate our method by examining the attractive and repulsive Hubbard
model in two-dimensions. In the latter, spin fluctuations are identified as the
origin of the pseudogap, and we also explain why wave pairing fluctuations
play a marginal role in suppressing the low-energy spectral weight, independent
of their actual strength.Comment: 6 pages, 2 figures + 4 pages supplementar
Electronic thermal conductivity at high temperatures: Violation of the Wiedemann-Franz law in narrow band metals
We study the electronic part of the thermal conductivity kappa of metals. We
present two methods for calculating kappa, a quantum Monte-Carlo (QMC) method
and a method where the phonons but not the electrons are treated
semiclassically (SC). We compare the two methods for a model of alkali-doped
C60, A3C60, and show that they agree well. We then mainly use the SC method,
which is simpler and easier to interpret. We perform SC calculations for Nb for
large temperatures T and find that kappa increases with T as kappa(T)=a+bT,
where a and b are constants, consistent with a saturation of the mean free
path, l, and in good agreement with experiment. In contrast, we find that for
A3C60, kappa(T) decreases with T for very large T. We discuss the reason for
this qualitatively in the limit of large T. We give a quantum-mechanical
explanation of the saturation of l for Nb and derive the Wiedemann-Franz law in
the limit of T much smaller than W, where W is the band width. In contrast, due
to the small W of A3C60, the assumption T much smaller than W can be violated.
We show that this leads to kappa(T) \sim T^{-3/2} for very large T and a strong
violation of the Wiedemann-Franz law.Comment: 8 pages, 4 figure
Spin transfer torque on magnetic insulators
Recent experimental and theoretical studies focus on spin-mediated heat
currents at interfaces between normal metals and magnetic insulators. We
resolve conflicting estimates for the order of magnitude of the spin transfer
torque by first-principles calculations. The spin mixing conductance
G^\uparrow\downarrow of the interface between silver and the insulating
ferrimagnet Yttrium Iron Garnet (YIG) is dominated by its real part and of the
order of 10^14 \Omega^-1m^-2, i.e. close to the value for intermetallic
interface, which can be explained by a local spin model.Comment: 4 pages, 4 figures, 2 table
Gravitational lensing of the farthest known supernova SN1997ff
We investigate the effects of gravitational lensing due to intervening
galaxies on the recently discovered Type Ia supernova at z=1.7, SN1997ff, in
the Hubble Deep Field North. We find that it is possible to obtain a wide range
of magnifications by varying the mass and/or the velocity dispersion
normalization of the lensing galaxies. In order to be able to use SN1997ff to
constrain the redshift-distance relation, very detailed modeling of the
galaxies to control the systematic effects from lensing is necessary. Thus we
argue, that based on our current limited knowledge of the lensing galaxies, it
is difficult to use SN1997ff to constrain the values of Omega_M and
Omega_Lambda, or even to place severe limits on grey dust obscuration or
luminosity evolution of Type Ia supernovae.Comment: 5 pages, 4 figures, minor revisions after bug fix, conclusions remain
unchange
The mean free path for electron conduction in metallic fullerenes
We calculate the electrical resistivity due to electron-phonon scattering for
a model of A3C60 (A= K, Rb), using an essentially exact quantum Monte-Carlo
calculation. In agreement with experiment, we obtain exceptionally large
metallic resistivities at large temperatures T. This illustrates that the
apparent mean free path can be much shorter than the separation of the
molecules. An interpretation of this result is given. The calculation also
explains the linear behavior in T at small T.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at
http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
- …