1,696 research outputs found

    Phonon spectral function for an interacting electron-phonon system

    Full text link
    Using exact diagonalzation techniques, we study a model of interacting electrons and phonons. The spectral width of the phonons is found to be reduced as the Coulomb interaction U is increased. For a system with two modes per site, we find a transfer of coupling strength from the upper to the lower mode. This transfer is reduced as U is increased. These results give a qualitative explanation of differences between Raman and photoemission estimates of the electron-phonon coupling constants for A3C60 (A= K, Rb).Comment: 4 pages, RevTeX, 2 eps figur

    Electron-phonon interaction and antiferromagnetic correlations

    Get PDF
    We study effects of the Coulomb repulsion on the electron-phonon interaction (EPI) in a model of cuprates at zero and finite doping. We find that antiferromagnetic correlations strongly enhance EPI effects on the electron Green's function with respect to the paramagnetic correlated system, but the net effect of the Coulomb interaction is a moderate suppression of the EPI. Doping leads to additional suppression, due to reduced antiferromagnetic correlations. In contrast, the Coulomb interaction strongly suppresses EPI effects on phonons, but the suppression weakens with doping.Comment: 4 pages and 5 figure

    Metal-insulator transitions: Influence of lattice structure, Jahn-Teller effect, and Hund's rule coupling

    Full text link
    We study the influence of the lattice structure, the Jahn-Teller effect and the Hund's rule coupling on a metal-insulator transition in AnC60 (A= K, Rb). The difference in lattice structure favors A3C60 (fcc) being a metal and A4C60 (bct) being an insulator, and the coupling to Hg Jahn-Teller phonons favors A4C60 being nonmagnetic. The coupling to Hg (Ag) phonons decreases (increases) the value Uc of the Coulomb integral at which the metal-insulator transition occurs. There is an important partial cancellation between the Jahn-Teller effect and the Hund's rule coupling.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene

    Electron self-energy in A3C60 (A=K, Rb): Effects of t1u plasmon in GW approximation

    Full text link
    The electron self-energy of the t1u states in A3C60 (A=K, Rb) is calculated using the so-called GW approximation. The calculation is performed within a model which considers the t1u charge carrier plasmon at 0.5 eV and takes into account scattering of the electrons within the t1u band. A moderate reduction (35 %) of the t1u band width is obtained.Comment: 4 pages, revtex, 1 figure more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Pauli susceptibility of A3C60 (A=K, Rb)

    Full text link
    The Pauli paramagnetic susceptibility of A3C60 (A= K, Rb) compounds is calculated. A lattice quantum Monte Carlo method is applied to a multi-band Hubbard model, including the on-site Coulomb interaction U. It is found that the many-body enhancement of the susceptibility is of the order of a factor of three. This reconciles estimates of the density of states from the susceptibility with other estimates. The enhancement is an example of a substantial many-body effect in the doped fullerenes.Comment: 4 pages, revtex, 2 figures, submitted to Phys. Rev. B more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Fluctuation diagnostics of the electron self-energy: Origin of the pseudogap physics

    Full text link
    We demonstrate how to identify which physical processes dominate the low-energy spectral functions of correlated electron systems. We obtain an unambiguous classification through an analysis of the equation of motion for the electron self-energy in its charge, spin and particle-particle representations. Our procedure is then employed to clarify the controversial physics responsible for the appearance of the pseudogap in correlated systems. We illustrate our method by examining the attractive and repulsive Hubbard model in two-dimensions. In the latter, spin fluctuations are identified as the origin of the pseudogap, and we also explain why dd-wave pairing fluctuations play a marginal role in suppressing the low-energy spectral weight, independent of their actual strength.Comment: 6 pages, 2 figures + 4 pages supplementar

    Electronic thermal conductivity at high temperatures: Violation of the Wiedemann-Franz law in narrow band metals

    Full text link
    We study the electronic part of the thermal conductivity kappa of metals. We present two methods for calculating kappa, a quantum Monte-Carlo (QMC) method and a method where the phonons but not the electrons are treated semiclassically (SC). We compare the two methods for a model of alkali-doped C60, A3C60, and show that they agree well. We then mainly use the SC method, which is simpler and easier to interpret. We perform SC calculations for Nb for large temperatures T and find that kappa increases with T as kappa(T)=a+bT, where a and b are constants, consistent with a saturation of the mean free path, l, and in good agreement with experiment. In contrast, we find that for A3C60, kappa(T) decreases with T for very large T. We discuss the reason for this qualitatively in the limit of large T. We give a quantum-mechanical explanation of the saturation of l for Nb and derive the Wiedemann-Franz law in the limit of T much smaller than W, where W is the band width. In contrast, due to the small W of A3C60, the assumption T much smaller than W can be violated. We show that this leads to kappa(T) \sim T^{-3/2} for very large T and a strong violation of the Wiedemann-Franz law.Comment: 8 pages, 4 figure

    Spin transfer torque on magnetic insulators

    Full text link
    Recent experimental and theoretical studies focus on spin-mediated heat currents at interfaces between normal metals and magnetic insulators. We resolve conflicting estimates for the order of magnitude of the spin transfer torque by first-principles calculations. The spin mixing conductance G^\uparrow\downarrow of the interface between silver and the insulating ferrimagnet Yttrium Iron Garnet (YIG) is dominated by its real part and of the order of 10^14 \Omega^-1m^-2, i.e. close to the value for intermetallic interface, which can be explained by a local spin model.Comment: 4 pages, 4 figures, 2 table

    Gravitational lensing of the farthest known supernova SN1997ff

    Full text link
    We investigate the effects of gravitational lensing due to intervening galaxies on the recently discovered Type Ia supernova at z=1.7, SN1997ff, in the Hubble Deep Field North. We find that it is possible to obtain a wide range of magnifications by varying the mass and/or the velocity dispersion normalization of the lensing galaxies. In order to be able to use SN1997ff to constrain the redshift-distance relation, very detailed modeling of the galaxies to control the systematic effects from lensing is necessary. Thus we argue, that based on our current limited knowledge of the lensing galaxies, it is difficult to use SN1997ff to constrain the values of Omega_M and Omega_Lambda, or even to place severe limits on grey dust obscuration or luminosity evolution of Type Ia supernovae.Comment: 5 pages, 4 figures, minor revisions after bug fix, conclusions remain unchange

    The mean free path for electron conduction in metallic fullerenes

    Full text link
    We calculate the electrical resistivity due to electron-phonon scattering for a model of A3C60 (A= K, Rb), using an essentially exact quantum Monte-Carlo calculation. In agreement with experiment, we obtain exceptionally large metallic resistivities at large temperatures T. This illustrates that the apparent mean free path can be much shorter than the separation of the molecules. An interpretation of this result is given. The calculation also explains the linear behavior in T at small T.Comment: 4 pages, RevTeX, 3 eps figure, additional material available at http://www.mpi-stuttgart.mpg.de/docs/ANDERSEN/fullerene
    corecore