3,291 research outputs found

    Brorfelde Schmidt CCD Catalog (BSCC)

    Full text link
    The Brorfelde Schmidt CCD Catalog (BSCC) contains about 13.7 million stars, north of +49 deg Declination with precise positions and V, R photometry. The catalog has been constructed from the reductions of 18,667 CCD frames observed with the Brorfelde Schmidt Telescope between 2000 and 2007. The Tycho-2 catalog was used for astrometric and photometric reference stars. Errors of individual positions are about 20 to 200 mas for stars in the R = 10 to 18 mag range. External comparisons with 2MASS and SDSS reveal possible small systematic errors in the BSCC of up to about 30 mas. The catalog is supplemented with J, H, and K_s magnitudes from the 2MASS catalog. The catalog data file (about 550 MB ASCII, compressed) will be made available at the Strasbourg Data Center (CDS).Comment: 16 pages, 22 figures, 2 tables, accepted by A

    Methane from UV-irradiated carbonaceous chondrites under simulated Martian conditions

    Get PDF
    A UV photolytic process was studied for the production of methane from carbonaceous chondrites under simulated Martian conditions. Methane evolution rates from carbonaceous chondrites were found to be positively correlated to temperature (−80 to 20°C) and the concentration of carbon in the chondrites (0.2 to 1.69 wt%); and decreased over time with Murchison samples exposed to Martian conditions. The amount of evolved methane (EM) per unit of UV energy was 7.9 × 10−13 mol J−1 for UV irradiation of Murchison (1.69 wt%) samples tested under Martian conditions (6.9 mbar and 20°C). Using a previously described Mars UV model (Moores et al., 2007), and the EM given above, an annual interplanetary dust particle (IDP) accreted mass of 2.4 × 105 kg carbon per year yields methane abundances between 2.2 to 11 ppbv for model scenarios in which 20 to 100% of the accreted carbon is converted to methane, respectively. The UV/CH4 model for accreted IDPs can explain a portion of the globally averaged methane abundance on Mars, but cannot easily explain seasonal, temporal, diurnal, or plume fluctuations of methane. Several impact processes were modeled to determine if periodic emplacement of organics from carbonaceous bolides could be invoked to explain the occurrence of methane plumes produced by the UV/CH4process. Modeling of surface impacts of high-density bolides, single airbursts of low-density bolides, and multiple airbursts of a cascading breakup of a low-density rubble-pile comet were all unable to reproduce a methane plume of 45 ppbv, as reported by Mumma et al

    Diastereoselective synthesis of novel heterocyclic scaffolds through tandem Petasis 3-component/intramolecular Diels-Alder and ROM-RCM reactions

    Get PDF
    Complexity-generating tandem Petasis 3-component/intramolecular Diels–Alder and ROM–RCM reactions for the diastereoselective synthesis of sp3-rich heterocyclic compound libraries are presented.</p

    Linear optics substituting scheme for multi-mode operations

    Get PDF
    We propose a scheme allowing a conditional implementation of suitably truncated general single- or multi-mode operators acting on states of traveling optical signal modes. The scheme solely relies on single-photon and coherent states and applies beam splitters and zero- and single-photon detections. The signal flow of the setup resembles that of a multi-mode quantum teleportation scheme thus allowing the individual signal modes to be spatially separated from each other. Some examples such as the realization of cross-Kerr nonlinearities, multi-mode mirrors, and the preparation of multi-photon entangled states are considered.Comment: 11 pages, 4 eps-figures, using revtex

    Blood ties: ABO is a trans-species polymorphism in primates

    Full text link
    The ABO histo-blood group, the critical determinant of transfusion incompatibility, was the first genetic polymorphism discovered in humans. Remarkably, ABO antigens are also polymorphic in many other primates, with the same two amino acid changes responsible for A and B specificity in all species sequenced to date. Whether this recurrence of A and B antigens is the result of an ancient polymorphism maintained across species or due to numerous, more recent instances of convergent evolution has been debated for decades, with a current consensus in support of convergent evolution. We show instead that genetic variation data in humans and gibbons as well as in Old World Monkeys are inconsistent with a model of convergent evolution and support the hypothesis of an ancient, multi-allelic polymorphism of which some alleles are shared by descent among species. These results demonstrate that the ABO polymorphism is a trans-species polymorphism among distantly related species and has remained under balancing selection for tens of millions of years, to date, the only such example in Hominoids and Old World Monkeys outside of the Major Histocompatibility Complex.Comment: 45 pages, 4 Figures, 4 Supplementary Figures, 5 Supplementary Table

    Fabrication of ultrahigh-density nanowires by electrochemical nanolithography

    Get PDF
    An approach has been developed to produce silver nanoparticles (AgNPs) rapidly on semiconductor wafers using electrochemical deposition. The closely packed AgNPs have a density of up to 1.4 × 1011 cm-2 with good size uniformity. AgNPs retain their shape and position on the substrate when used as nanomasks for producing ultrahigh-density vertical nanowire arrays with controllable size, making it a one-step nanolithography technique. We demonstrate this method on Si/SiGe multilayer superlattices using electrochemical nanopatterning and plasma etching to obtain high-density Si/SiGe multilayer superlattice nanowires

    Continuous-variable optical quantum state tomography

    Full text link
    This review covers latest developments in continuous-variable quantum-state tomography of optical fields and photons, placing a special accent on its practical aspects and applications in quantum information technology. Optical homodyne tomography is reviewed as a method of reconstructing the state of light in a given optical mode. A range of relevant practical topics are discussed, such as state-reconstruction algorithms (with emphasis on the maximum-likelihood technique), the technology of time-domain homodyne detection, mode matching issues, and engineering of complex quantum states of light. The paper also surveys quantum-state tomography for the transverse spatial state (spatial mode) of the field in the special case of fields containing precisely one photon.Comment: Finally, a revision! Comments to lvov(at)ucalgary.ca and raymer(at)uoregon.edu are welcom

    Accurate masses and radii of normal stars: modern results and applications

    Get PDF
    This paper presents and discusses a critical compilation of accurate, fundamental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and alpha Centauri) that satisfy our criterion that the mass and radius of both stars be known to 3% or better. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. We discuss the use of this information for testing models of stellar evolution. The amount and quality of the data also allow us to analyse the tidal evolution of the systems in considerable depth, testing prescriptions of rotational synchronisation and orbital circularisation in greater detail than possible before. The new data also enable us to derive empirical calibrations of M and R for single (post-) main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff), log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively. Excellent agreement is found with independent determinations for host stars of transiting extrasolar planets, and good agreement with determinations of M and R from stellar models as constrained by trigonometric parallaxes and spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23 interferometric binaries with masses known to better than 3%, but without fundamental radius determinations (except alpha Aur). We discuss the prospects for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and Astrophysics Review. Ascii versions of the tables will appear in the online version of the articl
    • 

    corecore