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Diastereoselective Synthesis of Novel Heterocyclic Scaffolds 

through Tandem Petasis 3-Component/Intramolecular Diels-Alder 

and ROM-RCM Reactions 

Mette Ishoey,a,† Rico G. Petersen,a,† Michael A. Petersen,a Peng Wu,a Mads H. Clausen,a,b* and 
Thomas E. Nielsena,c,d* 

A high-yielding, stereoselective and extraordinarily complexity-

generating Petasis 3-component/intramolecular Diels-Alder 

reaction has been developed. In combination with ROM-RCM,  

rapid access to complex sp
3
-rich heterocyclic scaffolds amenable 

to subsequent functionalization and library synthesis is provided. 

High-throughput screening (HTS) remains a preferred 

approach for the identification of novel starting points for 

chemical biology probe and drug discovery.1 Hence, 

parameters such as size, design and quality of molecular 

screening collections are of crucial importance for the 

successful outcome of HTS campaigns. In recent years, it has 

become apparent that traditional screening collections, which 

are largely dominated by ‘flat’ (sp2-rich), small molecules lack 

the structural complexity and diversity required to target more 

challenging biological targets such as protein-protein 

interactions, transcription factors and nucleic acid 

macromolecules.2 Aiming for a better coverage of biologically 

relevant chemical space,3 strategies relying on concise and 

efficient synthetic pathways for the generation of structurally 

diverse molecular libraries, featuring a higher content of sp3-

hybridization, scaffold complexity and functional group 

diversity have been developed.4 Importantly, while providing 

access to molecular frameworks that mimic the structural 

complexity of natural products, these strategies focus on 

enabling the synthesis of structural analogs to allow for a 

smoother downstream optimization and advancement of 

screening hits.  

In our continuing efforts to develop strategies for the 

generation of structurally diverse compound libraries,5 we 

recently reported a build/couple/pair strategy4e combining the 

Petasis 3-component reaction (Petasis 3-CR) with Ru-

alkylidene catalyzed ring-closing metathesis (RCM).5b To 

further develop this strategy, we employed 2-furylboronic acid 

in the Petasis 3-CR of masked α-hydroxy aldehyde 1 (racemic) 

and diallylamine, and we were delighted to observe that a 

consecutive intramolecular Diels-Alder (IMDA) reaction 

provided 2 in 68% yield as a single diastereomer (Figure 1A). 
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Figure 1: Tandem Petasis 3-CR/IMDA reaction combined with a ROM-RCM 
sequence: A) Reaction discovery and X-ray confirmation of structure; B) Strategy 
for utilization of the reaction sequence in the synthesis of libraries based on 
densely functionalized heterocyclic scaffolds. 

In an attempt to promote RCM, 2 was subjected to Grubbs 2nd 
generation catalyst (Grubbs II), however, one equivalent of 
hydrochloric acid was required to promote full conversion. 
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Interestingly, instead of the RCM product 3, the tricyclic 
scaffold 4 resulting from a ring-opening ring-closing metathesis 
(ROM-RCM) reaction was isolated in 66% yield. The structure 
of 4 was verified by X-ray crystallography, which indirectly 
confirmed the diastereoselectivity assigned to the IMDA 
reaction. 
Intrigued by the molecular complexity accessible in only two 
synthetic operations, we envisaged the synthesis of screening-
relevant molecular libraries based on scaffolds I and II (Figure 
1B). The multicomponent nature of the Petasis 3-CR would 
allow for variation of appendage diversity around the core 
scaffolds, and through appropriate incorporation of functional 
groups, additional downstream diversifications would be 
possible. We decided to probe the scope of the tandem Petasis 
3-CR/IMDA reaction using glycolaldehyde (R1 = H), as this 
would allow for the construction of a sub-library based on I, 
where diversification of the resulting primary alcohol would 
invoke no stereochemical consequences. 

The Petasis 3-CR was conducted in methanol at room 

temperature (Table 1). Under these reaction conditions, 

subsequent IMDA reactions remained incomplete, and it 

proved more efficient to conduct this step in refluxing 

acetonitrile following removal of methanol in vacuo. Thus, the 

use of glycolaldehyde and 2-furylboronic acid in combination 

with diallylamine (entry 1) or benzyl allylamine (entry 2) 

afforded the products as single diastereomers in good yields. 

The stereochemistry of the products, resulting from an exo 

transition state with the dienophile approaching from the Si 

face, was determined by 2D NOESY correlations of 8b.§ 

Table 1: Scope of the one-pot tandem Petasis 3-CR/IMDA reaction. 

 

Entry R
1
 R

2
 R

3
 

Product; yield 

(%)
a
 

1 Hb allyl H 8a, 65c 
2 Hb Bn H 8b, 77c 
3 Hb allyl CH2NHBoc 8c, 97 
4 allyld allyl H 2, 91 
5 allyld allyl CH2NHBoc 8d, 88 
6 allyld Bn CH2NHBoc 8e, 84 
7 allyld DMBe CH2NHBoc 8f, 72 
8 allyld Me CH2NHBoc 8g, 47 

a Isolated yield after flash column chromatography. b Glycolaldehyde dimer was 

used as the aldehyde component. c Overall yield over two steps with isolation of 

the Petasis product (see ESI). d Masked α-hydroxy aldehyde 1 was used as the 

aldehyde component. e DMB = 2,4-dimethoxybenzyl. 

Pleasingly, the use of the Boc-protected 5-aminomethyl-

substituted 2-furylboronic acid 7b gave the corresponding 

product 8c in quantitative yield, thereby providing an 

additional handle for downstream diversification (entry 3). 

Importantly, these conditions minimized the formation of a by-

product resulting from the reaction of masked α-hydroxy 

aldehyde 1 with the furyl boronic acid 7b (see ESI), in 

contrast to when the reaction was carried out in a mixture of 

refluxing CH2Cl2 and HFIP (Figure 1). Consequently, the yield 

of 2 was improved from the original 68% to 91% (entry 

4).Furthermore, the use of masked α-hydroxy aldehyde 1 in 

combination with furylboronic acid 7b was well-tolerated for 

various allylamines (entries 5-8), although the yield of 8g was 

slightly lower. The use of salicylaldehyde in the Petasis 3-

CR/IMDA reaction with benzyl allylamine and 2-furylboronic 

acid gave the corresponding product in 84% yield (see ESI), and 

the X-ray structure unambiguously confirmed the 

diastereoselectivity of the transformation.  

To allow for a more modular introduction of amine 

appendages, R2, we investigated the possibility of deallylating 

8c, and then, through reductive amination, re-introduce amine 

substituents. 

Table 2: Deallylation, reductive amination, O-arylation and primary amine 

functionalization for the synthesis of densely functionalized compounds 12.a 
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a Reagents and conditions: a) Pd(PPh3)4, isopropylidene 2-methylmalonate, 

CHCl3, reflux; b) R1CHO, NaBH(OAc)3, CH2Cl2, rt, 4 Å M.S; c) (i) ArOH, DEAD, 

PPh3, THF, 0 oC to rt; (ii) TFA, CH2Cl2, 0 oC to rt; d) Carboxylic acid, PyBOP, 
iPr2EtN, CH2Cl2, rt; e) Isocyanate, iPr2EtN, CH2Cl2, rt; f) Sulfonyl chloride, 
iPr2EtN, CH2Cl2, rt. b Yield of 10. c Yield of 11. d Yield of 12. 

 The use of Pd(PPh3)4 and N,N-dimethylbarbituric acid in 

refluxing chloroform6 gave full conversion of 8c to 9, but it 

proved challenging to remove the barbituric acid by-products 

during purification. However, the use of methyl Meldrum’s 

acid (isopropylidene 2-methylmalonate)7 effectively solved this 
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problem and 9 could be isolated in 51% yield (Table 2). We 

noted that the use of aqueous ammonium hydroxide as co-

solvent for flash-column chromatography8 was crucial, as 

triethylamine proved impossible to remove. 

Reductive amination of the secondary amine with NaBH(OAc)3 

proceeded smoothly with both aromatic and aliphatic 

aldehydes to give 10 in good yields (Table 2). The primary 

hydroxyl group was then arylated with a set of phenols using 

the Mitsunobu reaction. Both electron-rich and electon-poor 

phenols, as well as more sterically demanding entities, were 

well-tolerated, and following Boc-deprotection, primary 

amines 11 were isolated in good yields over two steps. The 

concomitant Boc-deprotection was necessary in order to 

effectively remove by-products from the Mitsunobu reaction. 

A final diversification step consisting of acylation, 

carbamoylation and sulfonylation of the primary amines 11, 

afforded the densely functionalized 12. Hence, library 

members (I) were obtained in just five synthetic operations 

from commercially available starting materials, thereby 

validating the proposed library strategy. 

Encouraged by these results, we investigated the scope of the 

ROM-RCM reaction (Table 3), with the goal of exploring a 

broader library design by utilizing the reaction to introduce 

scaffold diversity. 

Table 3: Scope of the ROM-RCM reaction. 

 
Entry Substrate R

1
 R

2
 Product, yield (%)

a
 

1 8d allyl CH2NHBoc 13a, 62 

2 2 allyl H 4, 76 

3 8e Bn CH2NHBoc 13b, 72, (80)b
 

4 8f DMBc CH2NHBoc 13c, N.D.,d (76)b
 

5 8g Me CH2NHBoc 13d, 65, (56)b
 

a 
Isolated yield after flash column chromatography. b Reaction conditions: 

Grubbs II (10 mol%), toluene, reflux. c DMB = 2,4-dimethoxybenzyl. d N.D. = not 

determined. 
 

Compared to the initial reaction conditions used for R2 = H 

(Figure 1A), substrates with R2 = CH2NHBoc (Table 3), required 

elevated temperatures to bring about full conversion of 

starting materials. Pleasingly, 13a was obtained from 8d in a 

good yield of 62% (entry 1). By employing these conditions to 

the original substrate (2) the yield of 4 was improved from 66% 

to 76% (entry 2). Satisfyingly, also the benzyl- and methyl-

substituted amines (8e and 8g, respectively) readily underwent 

ROM-RCM to give the corresponding products 13b and 13d in 

72% and 65% yield (entries 3 and 5), respectively. Interestingly, 

the ROM-RCM reaction of benzyl-, 2,4-dimethoxybenzyl 

(DMB)- and methyl-substituted amines  took place in the 

absence of hydrochloric acid when the reaction was conducted 

in refluxing toluene (entries 3-5). Under these conditions the 

yield of 13b was improved to 80%, 13c was isolated in 76% 

yield (entries 4 and 5, respectively), while 13d was isolated in 

slightly lower yield (56%) (entry 5). Attempts to bring about 

the ROM-RCM reaction of 8d in the absence of hydrochloric 

acid were unsuccessful. Altogether these findings suggested 

that the nucleophilicity as well as steric hindrance of the amine 

were determining factors for the ROM-RCM reaction.  

Implementing the same modular approach for installation of 

amine appendages as before, 4 and 13a were deallylated 

(Table 4). Pleasingly, only the most accessible allylic olefin 

reacted to provide secondary amines 14a and 14b in good 

yields of 65% and 70%, respectively (Table 4). The versatility of 

this approach was further demonstrated through both 

reductive amination and PyBOP-mediated acylation with 

carboxylic acids, to afford tertiary amines and amides 15. For 

example, amide 15c would otherwise be inaccessible through 

the Petasis 3-CR. Functionalizations of the primary amine were 

subsequently realized through Boc-deprotection followed by 

acylation, carbamoylation or sulfonylation to afford final 

library members 16.  

Table 4: Deallylation, reductive amination and acylation, followed by primary amine 

functionalization for the synthesis of novel scaffolds 16.a 

 

 

a Reagents and conditions: a) Pd(PPh3)4, isopropylidene 2-methylmalonate, 

CHCl3, reflux; b) R1CHO, NaBH(OAc)3, CH2Cl2, rt, 4 Å mol sieves; c) Carboxylic 

acid, PyBOP, Et3N, CH2Cl2, rt; d) (i) TFA, CH2Cl2, rt; (ii) Carboxylic acid, PyBOP, 

Et3N, CH2Cl2, rt; e) (i) TFA, CH2Cl2, rt; (ii) Acid chloride, Et3N, CH2Cl2, 0 oC to rt; 

f) (i) TFA, CH2Cl2, rt; (ii) Isocyanate, Et3N, CH2Cl2, rt; g) (i) TFA, CH2Cl2, rt; (ii) 

Sulfonyl chloride, Et3N, CH2Cl2, 0 oC to rt. b Yield of 15. c Yield of 16. d DMB = 

2,4-dimethoxybenzyl. 
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The introduction of the acryl amide moiety in 16b provided the 

opportunity for further diversification through RCM of the 

terminal olefin, and the spirocyclic product 17 was isolated in 

78% yield (Scheme 1). Cross-metathesis (CM) reactions were 

also investigated as a means of olefin functionalization, and 

while substrates with R3 = CH2NHBoc only resulted in traces of 

product, Hoveyda-Grubbs 2nd generation catalyst (H-G II) in 

combination with copper(I)iodide9 efficiently promoted the 

CM of 16e with ethyl acrylate to afford 18 in 74% yield.  

16b or 15c

N
H

H

O

HO R2

R1

H-G II, CuI
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CH2Cl2, reflux

N

O

H

H

HO
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Ph

O

CO2Et
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N
H

H

O

HO

Ph
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NH

O

R2 = HR2 = CH2NHCOCHCH2

 
Scheme 1: Functionalizaton of the terminal olefin via RCM and CM. 

In summary, we have developed a concise strategy for the 

synthesis of complex heterocyclic scaffolds utilizing a highly 

diastereoselective tandem Petasis 3-CR/IMDA reaction in 

combination with a ROM-RCM sequence. Through the 

incorporation of strategically positioned functional groups, we 

have synthesized a library of densely diversified small 

molecules that mimic the structural complexity of natural 

products. 

The research leading to these results has received support 

from the Innovative Medicines Initiative Joint Undertaking 

under grant agreement no. 115489, resources of which are 

composed of financial contribution from the European Union’s 

Seventh Framework Programme (FP7/2007-2013) and EFPIA 

companies’ in-kind contribution. The Technical University of 

Denmark is gratefully acknowledged for financial support and 

we thank Associate Professor Pernille Harris for assistance with 

X-ray crystallography. 

Notes and references 

§ See NOESY assignments for 8b in ESI. 
 
1. R. Macarron, M. N. Banks, D. Bojanic, D. J. Burns, D. A. Cirovic, T. 

Garyantes, D. V. S. Green, R. P. Hertzberg, W. P. Janzen, J. W. 
Paslay, U. Schopfer and G. S. Sittampalam, Nat. Rev. Drug 

Discovery, 2011, 10, 188. 
2. (a) C. M. Dobson, Nature, 2004, 432, 824; (b) R. A. Bauer, J. M. 

Wurst and D. S. Tan, Curr. Opin. Chem. Biol., 2010, 14, 308; (c) S. 
Dandapani and L. A. Marcaurelle, Nat. Chem. Biol., 2010, 6, 861; 
(d) C. J. O' Connor, H. S. G. Beckmann and D. R. Spring, Chem. 

Soc. Rev., 2012, 41, 4444. 
3. D. H. Drewry and R. Macarron, Curr. Opin. Chem. Biol., 2010, 14, 

289. 
4. (a) S. L. Schreiber, Science, 2000, 287, 1964; (b) R. Breinbauer, I. 

R. Vetter and H. Waldmann, Angew. Chem. Int. Ed., 2002, 41, 
2878; (c) M. D. Burke, E. M. Berger and S. L. Schreiber, Science, 

2003, 302, 613; (d) M. D. Burke and S. L. Schreiber, Angew. 

Chem. Int. Ed., 2004, 43, 46; (e) T. E. Nielsen and S. L. Schreiber, 
Angew. Chem. Int. Ed., 2008, 47, 48; (f) W. R. J. D. Galloway, A. 
Isidro-Llobet and D. R. Spring, Nat. Commun., 2010, 1, 80; (g) S. 
L. Schreiber, Proc. Natl. Acad. Sci. USA, 2011, 108, 6699; (h) A. 
Nadin, C. Hattotuwagama and I. Churcher, Angew. Chem. Int. 

Ed. Engl., 2012, 51, 1114; (i) R. Doveston, S. Marsden and A. 
Nelson, Drug Discov Today, 2014, 19, 813; (j) H. van Hattum and 
H. Waldmann, J. Am. Chem. Soc., 2014, 136, 11853. 

5. (a) E. Ascic, J. F. Jensen and T. E. Nielsen, Angew. Chem. Int. Ed., 
2011, 50, 5188; (b) E. Ascic, S. T. Le Quement, M. Ishoey, M. 
Daugaard and T. E. Nielsen, ACS Comb. Sci., 2012, 14, 253; (c) S. 
T. Le Quement, T. Flagstad, R. J. T. Mikkelsen, M. R. Hansen, M. 
C. Givskov and T. E. Nielsen, Org. Lett., 2012, 14, 640; (d) R. 
Petersen, S. T. L. Quement and T. E. Nielsen, Angew. Chem. Int. 

Ed., 2014, 53, 11778; (e) T. Flagstad, M. R. Hansen, S. T. Le 
Quement, M. Givskov and T. E. Nielsen, ACS Comb. Sci., 2015, 
17, 19; (f) T. Flagstad, M. R. Hansen, S. T. Le Quement, M. 
Givskov and T. E. Nielsen, ACS Comb. Sci., 2014, 17, 19; (g) R. G. 
Petersen, A. E. Cohrt, M. A. Petersen, P. Wu, M. H. Clausen and 
T. E. Nielsen, Bioorg. Med. Chem., 2015, 23, 2646; (h) M. A. 
Petersen, M. A. Mortensen, A. E. Cohrt, R. G. Petersen, P. Wu, 
N. Fleury-Brégot, R. Morgentin, C. Lardy, T. E. Nielsen and M. H. 
Clausen, Bioorg. Med. Chem., 2015, 23, 2695; (i) P. Wu, M. A. 
Petersen, R. Petersen, T. Flagstad, R. Guilleux, M. Ohsten, R. 
Morgentin, T. E. Nielsen and M. H. Clausen, RSC Adv., 2016, 6, 
46654; (j) P. Wu, M. A. Petersen, A. E. Cohrt, R. Petersen, R. 
Morgentin, H. Lemoine, C. Roche, A. Willaume, M. H. Clausen 
and T. E. Nielsen, Org. Biomol. Chem., 2016, 14, 6947. 

6. F. Garro-Helion, A. Merzouk and F. Guibé, J. Org. Chem., 1993, 
58, 6109. 

7. D. B. C. Martin and C. D. Vanderwal, Chem. Sci., 2011, 2, 649. 
8. B. C. Laguzza and B. Ganem, Tetrahedron Lett., 1981, 22, 1483. 
9. K. Voigtritter, S. Ghorai and B. H. Lipshutz, J. Org. Chem., 2011, 

76, 4697. 

 

Page 4 of 4ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
9 

Ju
ne

 2
01

7.
 D

ow
nl

oa
de

d 
by

 D
T

U
 L

ib
ra

ry
 o

n 
05

/0
7/

20
17

 0
9:

03
:4

2.
 

View Article Online
DOI: 10.1039/C7CC02948A

http://dx.doi.org/10.1039/c7cc02948a

