3,408 research outputs found

    Moderate Growth Time Series for Dynamic Combinatorics Modelisation

    Full text link
    Here, we present a family of time series with a simple growth constraint. This family can be the basis of a model to apply to emerging computation in business and micro-economy where global functions can be expressed from local rules. We explicit a double statistics on these series which allows to establish a one-to-one correspondence between three other ballot-like strunctures

    Recipe theorem for the Tutte polynomial for matroids, renormalization group-like approach

    Full text link
    Using a quantum field theory renormalization group-like differential equation, we give a new proof of the recipe theorem for the Tutte polynomial for matroids. The solution of such an equation is in fact given by some appropriate characters of the Hopf algebra of isomorphic classes of matroids, characters which are then related to the Tutte polynomial for matroids. This Hopf algebraic approach also allows to prove, in a new way, a matroid Tutte polynomial convolution formula appearing in W. Kook {\it et. al., J. Comb. Series} {\bf B 76} (1999).Comment: 14 pages, 3 figure

    The mechanics of shuffle products and their siblings

    Full text link
    We carry on the investigation initiated in [15] : we describe new shuffle products coming from some special functions and group them, along with other products encountered in the literature, in a class of products, which we name φ\varphi-shuffle products. Our paper is dedicated to a study of the latter class, from a combinatorial standpoint. We consider first how to extend Radford's theorem to the products in that class, then how to construct their bi-algebras. As some conditions are necessary do carry that out, we study them closely and simplify them so that they can be seen directly from the definition of the product. We eventually test these conditions on the products mentioned above

    Phantom Black Holes in Einstein-Maxwell-Dilaton Theory

    Full text link
    We obtain the general static, spherically symmetric solution for the Einstein-Maxwell-dilaton system in four dimensions with a phantom coupling for the dilaton and/or the Maxwell field. This leads to new classes of black hole solutions, with single or multiple horizons. Using the geodesic equations, we analyse the corresponding Penrose diagrams revealing, in some cases, new causal structures.Comment: Latex file, 32 pages, 15 figures in eps format. Typo corrected in Eq. (3.18

    HI emission from the red giant Y CVn with the VLA and FAST

    Full text link
    Imaging studies with the VLA have revealed HI emission associated with the extended circumstellar shells of red giants. We analyse the spectral map obtained on Y CVn, a J-type carbon star on the AGB. The HI line profiles can be interpreted with a model of a detached shell resulting from the interaction of a stellar outflow with the local interstellar medium. We reproduce the spectral map by introducing a distortion along a direction corresponding to the star's motion in space. We then use this fitting to simulate observations expected from the FAST radiotelescope, and discuss its potential for improving ourdescription of the outer regions of circumstellar shells.Comment: accepted for publication in RA

    Microscopic nanomechanical dissipation in gallium arsenide resonators

    Full text link
    We report on a systematic study of nanomechanical dissipation in high-frequency (approximatively 300 MHz) gallium arsenide optomechanical disk resonators, in conditions where clamping and fluidic losses are negligible. Phonon-phonon interactions are shown to contribute with a loss background fading away at cryogenic temperatures (3 K). Atomic layer deposition of alumina at the surface modifies the quality factor of resonators, pointing towards the importance of surface dissipation. The temperature evolution is accurately fitted by two-level systems models, showing that nanomechanical dissipation in gallium arsenide resonators directly connects to their microscopic properties. Two-level systems, notably at surfaces, appear to rule the damping and fluctuations of such high-quality crystalline nanomechanical devices, at all temperatures from 3 to 300K
    • …
    corecore