336 research outputs found

    Infrared Emission by Dust Around lambda Bootis Stars: Debris Disks or Thermally Emitting Nebulae?

    Full text link
    We present a model that describes stellar infrared excesses due to heating of the interstellar (IS) dust by a hot star passing through a diffuse IS cloud. This model is applied to six lambda Bootis stars with infrared excesses. Plausible values for the IS medium (ISM) density and relative velocity between the cloud and the star yield fits to the excess emission. This result is consistent with the diffusion/accretion hypothesis that lambda Bootis stars (A- to F-type stars with large underabundances of Fe-peak elements) owe their characteristics to interactions with the ISM. This proposal invokes radiation pressure from the star to repel the IS dust and excavate a paraboloidal dust cavity in the IS cloud, while the metal-poor gas is accreted onto the stellar photosphere. However, the measurements of the infrared excesses can also be fit by planetary debris disk models. A more detailed consideration of the conditions to produce lambda Bootis characteristics indicates that the majority of infrared-excess stars within the Local Bubble probably have debris disks. Nevertheless, more distant stars may often have excesses due to heating of interstellar material such as in our model.Comment: 10 pages, 5 figures, 4 tables, accepted by ApJ, emulateap

    Characterization of the optical properties of the buried contact of the JWST MIRI Si:As infrared blocked impurity band detectors

    Full text link
    The Mid-Infrared Instrument MIRI on-board the James Webb Space Telescope uses three Si:As impurity band conduction detector arrays. MIRI medium resolution spectroscopic measurements (R\sim3500-1500) in the 5~μm\mu m to 28~μm\mu m wavelength range show a 10-30\% modulation of the spectral baseline; coherent reflections of infrared light within the Si:As detector arrays result in fringing. We quantify the shape and impact of fringes on spectra of optical sources observed with MIRI during ground testing and develop an optical model to simulate the observed modulation. We use our optical model in conjunction with the MIRI spectroscopic data to show that the properties of the buried contact inside the MIRI Si:As detector have a significant effect on the fringing behavior.Comment: 11 pages, 7 figures, SPIE Astronomical Telescopes + Instrumentation 2020, submitted to SPI

    Observability of the General Relativistic Precession of Periastra in Exoplanets

    Full text link
    The general relativistic precession rate of periastra in close-in exoplanets can be orders of magnitude larger than the magnitude of the same effect for Mercury. The realization that some of the close-in exoplanets have significant eccentricities raises the possibility that this precession might be detectable. We explore in this work the observability of the periastra precession using radial velocity and transit light curve observations. Our analysis is independent of the source of precession, which can also have significant contributions due to additional planets and tidal deformations. We find that precession of the periastra of the magnitude expected from general relativity can be detectable in timescales of <~ 10 years with current observational capabilities by measuring the change in the primary transit duration or in the time difference between primary and secondary transits. Radial velocity curves alone would be able to detect this precession for super-massive, close-in exoplanets orbiting inactive stars if they have ~100 datapoints at each of two epochs separated by ~20 years. We show that the contribution to the precession by tidal deformations may dominate the total precession in cases where the relativistic precession is detectable. Studies of transit durations with Kepler might need to take into account effects arising from the general relativistic and tidal induced precession of periastra for systems containing close-in, eccentric exoplanets. Such studies may be able to detect additional planets with masses comparable to that of Earth by detecting secular variations in the transit duration induced by the changing longitude of periastron.Comment: 13 pages, 5 figures. Accepted for publication in Ap

    Acetyl-l-carnitine normalizes the impaired long-term potentiation and spine density in a rat model of global ischemia

    Get PDF
    Aim: The aim of this study was to enhance the knowledge regarding actors and intentions in the development process of a mobile phone platform for self-management of hypertension. Methods: Our research approach was a 14-month longitudinal “real-time ethnography” method of description and analysis. Data were collected through focus groups with patients and providers, patient interviews, and design meetings with researchers and experts. The analysis was informed by the concepts of actors and inscriptions in actor-network theory (ANT). Results: Our study showed that laypersons, scientific actors, as well as technology itself, might influence development processes of support for self-management of hypertension. The intentions were inscribed into the technology design as well as the models of learning and treatment. Conclusions: The study highlighted important aspects of how actors and intentions feature in the development of the mobile phone platform to support self-management of hypertension. The study indicated the multifacetedness of the participating actors, including the prominent role of technology. The concrete results of such processes included questions in the self-report system, learning and treatment models

    Breathing Spots in a Reaction-Diffusion System

    Full text link
    A quasi-2-dimensional stationary spot in a disk-shaped chemical reactor is observed to bifurcate to an oscillating spot when a control parameter is increased beyond a critical value. Further increase of the control parameter leads to the collapse and disappearance of the spot. Analysis of a bistable activator-inhibitor model indicates that the observed behavior is a consequence of interaction of the front with the boundary near a parity breaking front bifurcation.Comment: 4 pages RevTeX, see also http://chaos.ph.utexas.edu/ and http://t7.lanl.gov/People/Aric

    Age and nutritional state influence the effects of cholecystokinin on energy balance

    Get PDF
    AbstractCholecystokinin (CCK) is anorexic, irrespective whether it is applied intraperitoneally (IP) or intracerebroventricularly (ICV) in male Wistar rats. The metabolic effects depend on the route of administration: by the IP route it elicits hypothermia (presumably by type-1 receptors, CCK1R-s), while ICV administration is followed by fever-like hypermetabolism and hyperthermia via activation of CCK2R-s, which latter response seems to be most important in the postprandial (compensatory) hypermetabolism. The efficacy of the IP injected CCK varies with age: it causes strong anorexia in young adult 4 and 6-months old and again in old rats (aged 18–24months), but the middle-aged (12-month old) ones seem to be resistant to this effect. Such pattern of effects may contribute to the explanation of age-related obesity observed in middle-aged animals as well as to the aging anorexia and loss of body weight in old ones. Diet-induced obesity accelerates the appearance of CCK-resistance as well as the return of high sensitivity to CCK in further aging, while chronic calorie-restriction prevents the development of resistance, as if the speed of the age-related regulatory changes was altered by the nutritional state. The effects of ICV applied CCK also change with age: the characteristic anorexic and hypermetabolic/hyperthermic effects can be observed in young adult rats, but the effects gradually and monotonically decline with age and disappear by the old age of 24months. These disparate age-related patterns of CCK efficacy upon peripheral or central administration routes may indicate that although both peripheral and central CCKR-s exert anorexic effects, they may have dissimilar roles in the regulation of overall energy balance

    Probing the stability of gravastars by dropping dust shells onto them

    Full text link
    As a preparation for the dynamical investigations, this paper begins with a short review of the three-layer gravastar model with distinguished attention to the structure of the pertinent parameter space of gravastars in equilibrium. Then the radial stability of these types of gravastars is studied by determining their response for the totally inelastic collision of their surface layer with a dust shell. It is assumed that the dominant energy condition holds and the speed of sound does not exceed that of the light in the matter of the surface layer. While in the analytic setup the equation of state is kept to be generic, in the numerical investigations three functionally distinct classes of equations of states are applied. In the corresponding particular cases the maximal mass of the dust shell that may fall onto a gravastar without converting it into a black hole is determined. For those configurations which remain stable the excursion of their radius is assigned. It is found that even the most compact gravastars cannot get beyond the lower limit of the size of conventional stars, provided that the dominant energy condition holds in both cases. It is also shown---independent of any assumption concerning the matter interbridging the internal de Sitter and the external Schwarzschild regions---that the better is a gravastar in mimicking a black hole the easier is to get the system formed by a dust shell and the gravastar beyond the event horizon of the composite system. In addition, a generic description of the totally inelastic collision of spherical shells in spherically symmetric spacetimes is also provided in the appendix.Comment: 29 pages, 10 figure

    The quantum efficiency and diffractive image artifacts of Si:As IBC mid-IR detector arrays at 5 - 10 μ\mum: Implications for the JWST/MIRI detectors

    Full text link
    Arsenic doped back illuminated blocked impurity band (BIBIB) silicon detectors have advanced near and mid-IR astronomy for over thirty years; they have high quantum efficiency (QE), especially at wavelengths longer than 10 μ\mum, and a large spectral range. Their radiation hardness is also an asset for space based instruments. Three examples of Si:As BIBIB arrays are used in the Mid-InfraRed Instrument (MIRI) of the James Webb Space Telescope (JWST), observing between 5 and 28 μ\mum. In this paper, we analyze the parameters leading to high quantum efficiency (up to \sim 60\%) for the MIRI devices between 5 and 10 μ\mum. We also model the cross-shaped artifact that was first noticed in the 5.7 and 7.8 μ\mum Spitzer/IRAC images and has since also been imaged at shorter wavelength (10 μ\le 10~\mum) laboratory tests of the MIRI detectors. The artifact is a result of internal reflective diffraction off the pixel-defining metallic contacts to the readout detector circuit. The low absorption in the arrays at the shorter wavelengths enables photons diffracted to wide angles to cross the detectors and substrates multiple times. This is related to similar behavior in other back illuminated solid-state detectors with poor absorption, such as conventional CCDs operating near 1 μ\mum. We investigate the properties of the artifact and its dependence on the detector architecture with a quantum-electrodynamic (QED) model of the probabilities of various photon paths. Knowledge of the artifact properties will be especially important for observations with the MIRI LRS and MRS spectroscopic modes.Comment: 17 pages, 15 figures, accepted for publication in PAS

    HST and Spitzer Observations of the HD 207129 Debris Ring

    Get PDF
    A debris ring around the star HD 207129 (G0V; d = 16.0 pc) has been imaged in scattered visible light with the ACS coronagraph on the Hubble Space Telescope and in thermal emission using MIPS on the Spitzer Space Telescope at 70 microns (resolved) and 160 microns (unresolved). Spitzer IRS (7-35 microns) and MIPS (55-90 microns) spectrographs measured disk emission at >28 microns. In the HST image the disk appears as a ~30 AU wide ring with a mean radius of ~163 AU and is inclined by 60 degrees from pole-on. At 70 microns it appears partially resolved and is elongated in the same direction and with nearly the same size as seen with HST in scattered light. At 0.6 microns the ring shows no significant brightness asymmetry, implying little or no forward scattering by its constituent dust. With a mean surface brightness of V=23.7 mag per square arcsec, it is the faintest disk imaged to date in scattered light.Comment: 28 pages, 8 figure
    corecore