160 research outputs found

    Debris Cloud Evolution: Mathematical Modeling and Application to Satellite Constellation Design

    Get PDF
    Orbital break-ups produce a large number of fragments, which constitute an obvious hazard for other satellites in nearby orbits. Of these fragments, many are too small to be detected by ground-based facilities: this leads to the need for mathematical modelling as a tool for adequate risk analysis. In this paper an average spatial density model is presented. It is based on the Gauss analogy and, for unperturbed Keplerian orbits, it matches the asymptotic density model developed by other authors. Risk analysis for satellite constellations is an interesting application of debris cloud evolution models: the survivability of a constellation as a whole following the break-up of one of its satellites is obviously of primary concern in the constellation design. Risk analysis is conducted over a number of traditional configurations in order to achieve an additional constraint on the design parameters. Results indicate the remarkable influence of the fragmentation point position along the orbit; moreover, the higher risk for low orbit and the advantage of placing more satellites on a limited number of planes are assessed

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl

    A benchmark study on the model-based estimation of the go-kart side-slip angle

    Get PDF
    Nowadays, the active safety systems that control the dynamics of passenger cars usually rely on real-time monitoring of vehicle side-slip angle (VSA). The VSA can’t be measured directly on the production vehicles since it requires the employment of high-end and expensive instrumentation. To realiably overcome the VSA estimation problem, different model-based techniques can be adopted. The aim of this work is to compare the performance of different model-based state estimators, evaluating both the estimation accuracy and the computational cost, required by each algorithm. To this purpose Extended Kalman Filters, Unscented Kalman Filters and Particle Filters have been implemented for the vehicle system under analysis. The physical representation of the process is represented by a single-track vehicle model adopting a simplified Pacejka tyre model. The results numerical results are then compared to the experimental data acquired within a specifically designed testing campaign, able to explore the entire vehicle dynamic range. To this aim an electric go-kart has been employed as a vehicle, equipped with steering wheel encoder, wheels angular speed encoder and IMU, while an S-motion has been adopted for the measurement of the experimental VSA quantity

    Three-Dimensional Path Planning of Unmanned Aerial Vehicles Using Particle Swarm Optimization

    Get PDF
    Military operations are turning to more complex and advanced automation technology for minimum risk and maximum efficiency. A critical piece to this strategy is unmanned aerial vehicles (UAVs). UAVs require the intelligence to safely maneuver along a path to an intended target, avoiding obstacles such as other aircrafts or enemy threats. Often automated path planning algorithms are employed to specify targets for a UAV to fly to. To date, path-planning algorithms have been limited to two-dimensional problem formulations. This paper presents a unique three-dimensional path planning problem formulation and solution approach using Particle Swarm Optimization (PSO). The problem formulation was designed to minimize risk due to enemy threats while simultaneously minimizing fuel consumption. The initial design point is a straight path between the current position and the desired target. Using PSO, an optimized path is generated through B-spline curves. The resulting paths can be optimized with a preference towards maximum safety, minimum fuel consumption or a combination of the two. The problem formulation and solution implementation is described along with the results from several simulated scenarios.This is a conference proceeding from AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (2006): 1, doi:10.2514/6.2006-6995. Posted with permission.</p

    Autonomous personal vehicle for the first- and last-mile transportation services

    Get PDF
    This paper describes an autonomous vehicle testbed that aims at providing the first- and last- mile transportation services. The vehicle mainly operates in a crowded urban environment whose features can be extracted a priori. To ensure that the system is economically feasible, we take a minimalistic approach and exploit prior knowledge of the environment and the availability of the existing infrastructure such as cellular networks and traffic cameras. We present three main components of the system: pedestrian detection, localization (even in the presence of tall buildings) and navigation. The performance of each component is evaluated. Finally, we describe the role of the existing infrastructural sensors and show the improved performance of the system when they are utilized

    Sampling-based Algorithms for Optimal Motion Planning

    Get PDF
    During the last decade, sampling-based path planning algorithms, such as Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have been shown to work well in practice and possess theoretical guarantees such as probabilistic completeness. However, little effort has been devoted to the formal analysis of the quality of the solution returned by such algorithms, e.g., as a function of the number of samples. The purpose of this paper is to fill this gap, by rigorously analyzing the asymptotic behavior of the cost of the solution returned by stochastic sampling-based algorithms as the number of samples increases. A number of negative results are provided, characterizing existing algorithms, e.g., showing that, under mild technical conditions, the cost of the solution returned by broadly used sampling-based algorithms converges almost surely to a non-optimal value. The main contribution of the paper is the introduction of new algorithms, namely, PRM* and RRT*, which are provably asymptotically optimal, i.e., such that the cost of the returned solution converges almost surely to the optimum. Moreover, it is shown that the computational complexity of the new algorithms is within a constant factor of that of their probabilistically complete (but not asymptotically optimal) counterparts. The analysis in this paper hinges on novel connections between stochastic sampling-based path planning algorithms and the theory of random geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics Researc

    Controlled mobility in stochastic and dynamic wireless networks

    Get PDF
    We consider the use of controlled mobility in wireless networks where messages arriving randomly in time and space are collected by mobile receivers (collectors). The collectors are responsible for receiving these messages via wireless transmission by dynamically adjusting their position in the network. Our goal is to utilize a combination of wireless transmission and controlled mobility to improve the throughput and delay performance in such networks. First, we consider a system with a single collector. We show that the necessary and sufficient stability condition for such a system is given by ρ<1 where ρ is the expected system load. We derive lower bounds for the expected message waiting time in the system and develop policies that are stable for all loads ρ<1 and have asymptotically optimal delay scaling. We show that the combination of mobility and wireless transmission results in a delay scaling of Θ([1 over 1−ρ]) with the system load ρ, in contrast to the Θ([1 over (1−ρ)[superscript 2]]) delay scaling in the corresponding system without wireless transmission, where the collector visits each message location. Next, we consider the system with multiple collectors. In the case where simultaneous transmissions to different collectors do not interfere with each other, we show that both the stability condition and the delay scaling extend from the single collector case. In the case where simultaneous transmissions to different collectors interfere with each other, we characterize the stability region of the system and show that a frame-based version of the well-known Max-Weight policy stabilizes the system asymptotically in the frame length.National Science Foundation (U.S.) (Grant CNS-0915988)United States. Army Research Office. Multidisciplinary University Research Initiative (Grant W911NF-08-1-0238
    corecore