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Abstract We consider the use of controlled mobility in wireless netwgonhere messages arriving
randomly in time and space are collected by mobile recefeaitectors). The collectors are responsi-
ble for receiving these messages via wireless communichtiaynamically adjusting their position

in the network. Our goal is to utilize a combinationwireless transmissioandcontrolled mobility

to improve the throughput and delay performance in such orésv In the first part of the paper we
consider a system with a single collector. We show that tleessary and sufficient stability condition
for such a system is given by < 1 wherep is the average system load. We derive lower bounds
for the average message waiting time in the system and depeliies that are stable for all loads
p < 1 and have asymptotically optimal delay scaling. We show ttiicombination of mobility and

wireless transmission results in a delay scalin@()fli—p) with the system loag in contrast to the

Q(ﬁ) delay scaling in the corresponding system where the colledsits each message loca-

tion. In the second part of the paper we consider the systéimiltiple collectors. In the case where
simultaneous transmissions to different collectors doimetfere with each other, we show that the
stability condition is given by < 1, wherep is the system load on multiple collectors. We develop
lower bounds on delay and generalize policies establisbethé single collector case to multiple

collectors case. We show that the delay scalin@oﬁ—p) extends to the case of multiple collectors,

in contrast to th@(ﬁ) delay scaling in the corresponding multi-collector systeitihout wire-
less transmission. We also consider the case where siraoligriransmissions to different collectors
interfere with each other. We characterize the stabiligiae of the system in terms of interference
constraints. We show that a frame-based version of thekmelvn Max-Weight policy is throughput-
optimal asymptotically in the frame length and derive anargpound on average delay under this

policy.
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Fig. 1: The system model for the case of a single collectoe.ddilector adjusts its position in order to
receive randomly arriving messages via wireless commtiaicarl he circles with radius* represent
the communication range and the dashed lines representiteetor’s path.

1 Introduction

There has been a significant amount of interest in performanalysis of mobility assisted wire-
less networks in the last decade (e.q., [21], [23], [33]][B2L], [43] [44], [49], [50], [52]). Typically,
throughput and delay performance of networks were analybhede nodes moving according to a ran-
dom mobility model were utilized for relaying data (e.g0]21,23,32,39]). More recently, networks
deploying nodes with controlled mobility have been consgddocusing primarily on route design and
ignoring the communication aspect of the problem (e.g], [23], [33], [44], [49], [26], [50], [53]).

In this paper we explore the use aintrolled mobilityandwireless transmissioim order to improve
the throughput and delay performance of wireless netwallesconsider a dynamic vehicle routing
problem where a vehicle (collector) uses a combination g&jgal movement and wireless reception
to receive randomly arriving data messages.

Our model consists of collectors that are responsible firagang messages that arrive randomly
in time at uniformly distributed geographical locationdhieTmessages are transmitted when a col-
lector is within their communication distance and depagt sfistem upon successful transmission.
Collectors adjusts their positions in order to succesghdteive these messages in the least amount
of time as shown in Fig. 1 for the case of one collector. Thiagsés particularly applicable to net-
works deployed in a large area so that mobile elements aessary to provide connectivity between
spatially separated entities in the network [13], [26],][332]. For instance, this model is applicable
to a densely deployed sensor network where mobile baserssatbllect data from a large number
of sensors densely deployed inside the network, [27], [BB]], [52], [53]. Another application is
utilizing Unmanned Aerial Vehicles (UAVS) as data harvegtilevices or as communication relays on
a battlefield environment [18], [41], [26], [53]. This modaso applies to networks in which data rate
is relatively low so that data transmission time is compkertithe collector’s travel time, for instance
in underwater sensor networks [1], [45].

Vehicle Routing Problems (VRPSs) have been extensivelyietiid the past (e.g., [2], [6], [8], [9],
[10], [17], [18], [34], [49], [50], [51]). The common examplof a VRP is the Euclidean Traveling

A preliminary version of this paper was presented in IEEE CIDCDec. 2001 [14].
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Salesman Problem (TSP) in which a single server is to visit @ember of a fixed set of locations on
the plane such that the total travel cost is minimized. Sdextensions of TSP have been considered
in the past such as stochastic demand arrivals and the useltpleservers [2], [8], [9], [18]. In
particular, in the TSP with neighborhoods (TSPN) problemghicle is to visit a neighborhood of
each demand location [6], [17], [34], which can model a m@bbllector receiving messages from a
communication distance. A more detailed review of theditere in this field can be found in [9], [34]
and [51].

Of particular relevance to us among the VRPs is the Dynaméwéling Repairman Problem
(DTRP) due to Bertsimas and van Ryzin [8], [9], [10]. DTRP istachastic and dynamic VRP in
which a vehicle is to serve demands that arrive randomlyre ind space. Fundamental lower bounds
on delay were established and several vehicle routingipsliwere analyzed for DTRP for a single
server in [8], for multiple servers in [9], and for generahtind and interarrival time distributions
in [10]. Altman and Levy [2] considered a similar problemmtexdqueuing in spacand and proposed
stabilizing algorithms. Later, [49], [50] generalized &RP model to analyze Dynamic Pickup and
Delivery Problem (DPDP) where fundamental bounds on dekexgwstablished. We apply the DTRP
model to wireless networks where the demands are data nesstadpe transmitted to a collector
which is capable of wireless communicatiom our system the problem has considerably different
characteristics since in this case the collector does na ttavisit message locations but rather can
receive the messages from a distance using wireless coroatiom. The objective in our system is
to effectively utilize this combination of wireless tranission and controlled mobility in order to
minimize the time average message waiting time.

In a closely related problem where multiple mobile node&wdntrolled mobility and communi-
cation capability relay the messages of static nodes, [d8yed a lower bound on node travel times.
Message sources and destinations are modeled as stat&indd8] and these nodes have saturated
arrivals hence queuing aspects were not considered. Indep@mdent work, [27] considered utiliz-
ing mobile wireless servers as data relays on periodic scane applied various delay relations from
Polling models to this setup. A mobile server harvestin@daim spatial queues in a wireless net-
work was considered in [41] where the stability region of sigetem was characterized using a fluid
model approximation. In [15] we analyzed a one-collectodeisimilar to the current paper but for
which the arriving messages were transmitted to the colterting a random access scheme, creating
interference among neighboring transmissions. In thiepape message transmissions are sched-
uled, i.e., there is only one transmission in the system atemdime, and the collector decides on the
message to be transmitted next. The two systems have coatsigldifferent characteristics as will be
explained in the following sections.

Another related body of literature lies in the area of uitiiig mobile elements that can control
their mobility to collect sensor data in Delay Tolerant Netls (DTN) (e.g., [13, 33,44, 45,52, 53]).
Route selection (e.qg., [33], [44], [53]), scheduling or dygmic mobility control (e.g., [13], [45], [52])
algorithms were proposed to maximize network lifetime,iovide connectivity or to minimize delay.
More detailed surveys of the related work in the area ofzitif mobility in DTN and Sensor Net-
works can be found in [45] and [53]. These works focus pritgan mobility and usually consider
particular policies for the mobile element. To the best aflmowledge, this is the first attempt to de-
velop fundamental bounds on delay in a system where a cotledio gather data messages randomly
arriving in time and space usingreless communicatioandcontrolled mobility

In the first part of the paper we consider a system with a siogliector and extend the results
of [8] for the DTRP problem to the communication setting. krtrular, we show thap < 1 is
the necessary and sufficient condition for the stabilityhef system wherg is the system load. We
derive lower bounds on delay and develop algorithms thaasymptotically within a constant factor
of the lower bounds. We show that the combination of mobdityg wireless transmission results in
a delay scaling 0©(1/(1 — p)) in contrast to the9(1/(1 — p)?) delay scaling in the system where

1 In previous works such as [2], [8], [9], the collector needsé at the message location in order to be able to serve it,
therefore, we will refer to the DTRP model as the system witlvareless transmission.
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the collector visits each message location analyzed in[§],In the second part of the paper we
consider the system with multiple collectors under the eggion that simultaneous transmissions to
different collectors do not interfere with each other. Wewlthat the necessary and sufficient stability
condition is still given byp < 1, wherep is the load on multiple collectors. We develop fundamental
lower bounds on delay in the system and generalize the soujllector policies analyzed in the first
part to the multiple collectors case. Finally we considendtiple-collector system under interference
constraints on simultaneous transmissions to differelfecors. We formulate a scheduling problem
and characterize the stability region of the system in tevhirsterference constraints on simultaneous
transmissions. We show that a frame-based version of thmmaklax-Weight scheduling policy can
stabilize the system whenever it is stabilizable and wevdean upper bound on average delay under
this policy.

This paper is organized as follows. In Section 2 we constuesingle collector case. We present
the model in Section 2.1, characterize the necessary afidisnf stability condition in Section 2.2,
derive the delay lower bound in Section 2.3, and analyzdesiogllector policies in Section 2.4. In
Section 3 and the subsections therein we extend the resules $ingle collector to systems with
multiple collectors whose transmissions do not interfeite wach other. In Section 4 we consider the
system with interference constraints on simultaneoustréssions to collectors. We first present the
model and characterize the stability region, and then aealye frame based Max-Weight policy in
Section 4.1 and propose an upper bound on the delay perfemudithis policy in Section 4.2.

2 Single Collector

In this section we consider the case of a single collectordeweélop fundamental insights into the
problem. We extend the stability and the delay results irafi2] [8], established for the system where
the collector visits each message location, to systemswiriless transmission capability. We show
that the combination of mobility and wireless transmissiesults in a delay scaling aﬂ(ﬁ) with

the system loagh in contrast to the@(ﬁ) delay scaling in the corresponding system without
wireless transmission in [2] and [8].

2.1 Model

Consider a square regidd of aread and messages arriving infd according to a Poisson process (in
time) of intensity\. Upon arrival the messages are distributed independemdlyiaiformly inR and
they are to be gathered by a collector via wireless recephinrarriving message is transmitted to the
collector when the collector comes within theception distancef the message location and grants
access for the message’s transmission. Therefore, theodrgerference power from the neighboring
nodes during message receptions.

We assume a Disk Model (or communication range model) [28]] for determining successful
message receptions. Let be thereception distancef the collector. Under the disk model, a trans-
mission can be received only if it is within a disk of raditisaround the collector. Note that the Disk
Model is similar to the Signal to Noise Ratio (SNR) packeemon model [16], [23], [24], termed
the SNR Model, under which a transmission is successfulpded at the collector if it's received
SNR is above a threshold. To see this, ifPr is the constant transmit power level of a transmis-
sion at distance away from the collector, due to distance-attenuation, gdoeived power satisfies
Pr = Prr—®[16], [23], [24], wherex is the power loss exponent. Therefore, under the SNR Model,
a transmission at distaneeto the collector is successfulif < r* = (Pr/(Pyx/))"/®, showing the
equivalence to the Disk Model. Under the Disk Model, if thedtion of the next message to be re-
ceived is withinr*, the collector stops and attempts to receive the messagerdse, the collector
travels towards the message location until it is within @etiser* away from the message. Under the
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disk model, transmissions are assumed to be at a constanakatg a fixed amount of time denoted
by s.

The collector travels from the current message receptiart pmthe next message reception point
at a constant speed We assume that at a given time the collector knows the loesatnd the arrival
times of the messages that arrived before this time. The latime of the service locations is a standard
assumption in vehicle routing literature [2], [6], [8], [ T18], [29], [34], [49].

Let N(¢) denote the total number of messages in the system attime

Definition 1 (Stability [5], [35], [37]) The system is stable under a given control potidf

limsup E[N (t)] < o0,
t—o00
namely, the long term expected number of messages in trensysfinite. Letp = As denote the load
arriving into the system per unit time. For stable systemtenotes the fraction of time the collector
spends receiving messages.

Definition 2 (Stability Region [37], [38], [46]) The stability regionA is the set of all load® such
that there exists a control algorithm that stabilizes thstegn.

A policy is said to be throughput-optimal if it stabilizestlBystem for all loads strictly inside.

We defineT; as the time between the arrival of messaged its successful receptioli; has
three componentdy, ;, the waiting time due to collector’s travel distance frore time messagée
arrives until it gets served}/, ;, the waiting time due to the reception times of messagesvexte
from the time messaggearrives until it gets served, and reception time of the message. The total
waiting time of messageis denoted byW; = Wy ; + W ;, hencelV; = T; — s. We letd; be the
collector travel distance from the collector’s receptiocdtion for the message served prior to message
i to collector’s reception location for messagé he time average per-message travel distance of the
collector, denoted by, is defined by an expectation in the steady state giveth bylim;_, . F[d;].

The time average delays W, W, andW, are defined similarly to havé = W, + W, + s whenever
the limits existI™ is defined to be the optimal system time which is given by tHepthat minimizes
T.

2.2 Stability

In this section we show that < 1 is a necessary and sufficient condition for the stability haf t
system. Note that this condition is also necessary and wmuffi¢or stability of the corresponding
system without wireless transmission, as shown in [2], aé agefor a G/G/1 queue [28]. Here we
prove this result using simpler techniques than [2]. Thdyasmain this section will be essential for
generalizing the stability condition and some delay ressalthe case of multiple collectors.

2.2.1 Necessary Condition for Stability

We lower bound the number of messages in the system by tha equivalent system in which travel
times are zero (i.ey, = o0). This technique was used in [2] to establish a necessasifistaondition
for the corresponding system without wireless transmisditere we give a simpler proof of this fact
in Appendix A for completeness.

Theorem 1 A necessary condition for stability is< 1. Furthermore, we have

As?
w > m 1)
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The proof in Appendix A first establishes that the steadyediate average delay in the system under
any policyr is at least as big as the delay of any work-conser/jmlicy in the equivalent system
in which travel times are zero (i.es, = oc). This is based on an induction argument that the total
number of messages in the system is always greater thamtte infinite velocity system. This is
because the service time per message is greater than thatiimfinite speed system. Since the latter
system behaves as an M/D/1 queue (a queue with Poissongrcivastant service times and 1 server),
its average waiting time is given by the Pollaczek-Khincfi#rK) formula for M/G/1 queues [7, p.
189], given in (1). A direct consequence of this lemma is thatcessary condition for stability in
the infinite speed system is also necessary for our systeenn@tessary and sufficient condition for
stability in an M/G/1 queue is given hy< 1 (see e.qg., [7] or [22]).

2.2.2 Sufficient Condition for Stability

Here we prove that < 1 is a sufficient condition for stability of the system underddigy based on
Euclidean TSP with neighborhoods (TSPN). TSPN is a gerat&in of TSP in which the server is

to visit a neighborhood of each demand location via the sisbpath [6], [17], [34]. In our case the
neighborhoods are disks of radius around each message location. TSPN is an NP-Hard problem
such as TSP. Recently, [34] proved that a Polynomial Timeréxmation Scheme (PTAS) exists for
TSPN among fat regions in the plane. A region is said tdabef it contains a disk whose size is
within a constant factor of the diameter of the region, eaglisk, and a PTAS belongs to a family of

(1 + e)-approximation algorithms parameterizededoy 0.

Under the TSPN policy, the collector performs a cyclic segvof the messages present in the
system starting and ending the cycle at the center of theanktiegion. Let timet;, be the time that
the collector returns to the center for thih time, where, = 0. Assume the system is initially empty
at timety. The TSPN Policy is described in detail in Algorithm 1.

Algorithm 1 TSPN Policy

1: Initially at ¢t = tq, the collector waits at the center & until the first message arrival, moves to
serve this message and returns to the center.

2: If the system is empty at timi,, £ = 1, 2, ..., the collector repeats the above process.

3: If there are messages waiting for service at tiqe: = 1, 2, ..., the collector computes the TSPN
tour (e.g., using the PTAS in [34]) through all the messabatdre present in the system at time
tx, receives these messages in that tour and returns to ther.cent

Let the total number of messages waiting for service at im#/(¢,), be the system state at time
t;. Note thatN (¢,) is an irreducible Markov chain on countable state spgc@/e show the stability
of the TSPN policy through the ergodicity of this Markov atai

Theorem 2 The system is stable under the TSPN policy for all lgaés1.

Proof Given the system stat® (¢;) at timet;, we apply the algorithm in [34] to find a TSPN tour
of length L, through theN (¢;) neighborhoods that is at mogt + ¢) away from the optimal TSPN
tour lengthL?. Note thatL? can be upper bounded by a constarfor all N(¢;). This is because the
collector does not have to move for messages within its conication range and a finite number of
such disks of radius* can cover the network region for amy > 0. The collector then can serve
the messages in each disk from its center incurring a touow$tant length. (an example of such
a tour is shown in Fig. 2). We will use the Foster-Lyapunovecion to show that the Markov chain
described by the statég(¢;) is positive recurrent [5]. We usé(N;) = sN(t;), the total load served

2 A work-conserving policy is such that the server does nat vdhen the queue is not empty.
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duringi'” cycle, as the Lyapunov function. Note tHat0) = 0, Sy, = {z : V(z) < K} is a bounded
set for all finite K andV (.) is a non-decreasing function. Since the arrival proces®issBn, the
expected number of arrivals during a cycle can be upper-tedias follows:

B[N (tiy1)IN(t:)] < ML/v + sN(t;)). 2)
Hence we obtain the following drift expression for the loadlidg a cycle.
E[sN(tit1) — sN(t:)|N(t:)] < pL/v— (1 = p)sN (t:). ®3)
Sincep < 1, there exista@ > 0 such thap + 6 < 1:
E[sN(tix1) — sN(t;)|N(t;)] < pL/v — dsN;
< —ds+ %J-{N(t,;)ES}a (4)

wherel;ycgy isequaltol if N € S and zero otherwise arffi= {N € N: N < K} is abounded set

with K = (UPTLS + 1]. Hence the drift is negative as long &4¢;) is outside a bounded set. Therefore,
by the standard Foster-Lyapunov criterion [3], [5], the kar chain (N (¢;)) is positive recurrent
and it has a unique stationary distribution [5]. Furthereparsing (3) we can bound the steady state
averageN (¢;) as [35]

limsup E[N (¢;)] <

t;—00 U(l - l)) .
Moreover, given somee [t;,t;+1], we have

limsup E[N (¢)] < limsup E[N (;) + N (ti+1)]

t—o0 t; —00
AL
<2—— < o0. (%)
v(1—p)
This establishes the stability of the TSPN policy for anydipa< 1. O

This establishes that < 1 is a necessary and sufficient condition for stability. Traet time
of the collector does not affect the stability region of tlystem. In other words, we have the same
stability region as a G/G/1 queue. The intuition behindtb&ult is that as the system load is increased,
under stable policies, the fraction of time spent on traeelsto zero. This observation is also true for
the corresponding system without wireless transmissiocesi < 1 is also necessary and sufficient
for stability of such systems [2].

The communication capability does not enlarge the stghiégion, however, it fundamentally
affects the delay scaling in the system. The delay scalingef SPN policy with loag is O(ﬁ)
as shown in (5), the same delay scaling as in a G/G/1 queus.i§ hifundamental improvement in
delay due to the wireless transmission capability as thaydstaling for the corresponding system
without wireless transmission @(ﬁ) [8]. This delay scaling can be easily obtained as follows.
The system without wireless transmission correspondsymga™ = 0 in our system. In this case,
one utilizes &1 + ¢) PTAS for the optimal TSP tour through the message locatiostead of the
TSPN tour. An upper bound on the TSP tour for @, ) points arbitrarily distributed in a square of
aread is given by./2AN (t;) + 1.75v/A [29]. Similar arguments as in the proof of Theorem 2 leads
to the drift condition

E[sN(tit1) = sN ()N (t:)] < p(r1v/ AN (t:) + k2) — (1 = p)sN (), (6)

for some constants; andx2, where the drift is again negative as longM§;) is outside a bounded
setS. The difference in this case is that the travel time per cgcldes with the number of messages
N(t;) asy/N(t;) and using (6) we can show that the delay scaling with the foigd)(—— ).

(1-p)?
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2.3 Lower Bound On Delay

For wireless networks with a small area and/or very good elbhquality such that* > /A/2,
the collector does not need to move as every message will lig ieception range if it just stays
at the center of the network region. In that case the systenibeanodeled as an M/D/1 queue with
service times and the associated queuing delay is given by the P-K fornauldfG/1 queues, i.e.,
W = X\s?/(2(1 — p)). However, when* < ,/A/2, the collector has to move in order to receive
some of the messages. In this case the receptiondisstill a constant, however, the travel time per
message is now a random variable which is not independeninosssages (for example, observing
small travel times for the previous messages implies a degtserk, and hence the future travel times
per message are also expected to be small). Next we provadeea bound similar to a lower bound
in [8] with the added complexity of communication capalilit our system.

Theorem 3 The optimal steady state time average dél&yis lower bounded by
E[(NU]] = r*)*] As®
v(l = p) 2(1—p)

where(||U|| —r*)* representsnax(0, ||U|| — r*), U is a uniformly distributed random variable over
the network regiork, andp = As is the system load.

Note that theE[(||U|| — r*)™] term can be further lower bounded By |U||] — r*, whereE[||U]|] =
0.383v/A [8].

Proof As outlined in Section 2.1, the delay of messag#; has three component$; = W, ; +
Wi + s;. Taking expectations and the limit as+ oo yields

T=W4s+Ws+s. (8)

T > +s. @)

A lower bound onlV; is found as follows: Note thalV, ;.v is the averagelistancethe collector
moves during the waiting time of messagd his distance is at least as large as the average distance
between the location of messagend the collector’s location at the time of mességarrival less the
reception distance*. The location of an arrival is determined according to th#aum distribution
over the network region, while the collector’s locationtdmsution is in general unknown as it depends
on the collector’s policy. We can lower boumid; by characterizing the expected distance between a
uniform arrival and the best a priori location in the netwtrlt minimizes the expected distance to a
uniform arrival. Namely we are after the locatiomthat minimize<E[||U — v||] whereU is a uniformly
distributed random variable. The locatiorthat solves this optimization is called theedianof the
region and in our case the median is the center of the squapedmetwork region. Because the travel
distance is nonnegative, we obtain the following boundign
*)+
S ElU]f =)™

Wy > ———"—. 9)

Let IV be the average number of messages received in a waiting tichle@? be the average residual
reception (service) time. Due to the PASTA property of Raisarrivals (Poisson Arrivals See Time
Averages) (see for example [7, p. 171]) a given arrival iagyestate observes the time average steady
state occupancy distribution. Therefore, the averagduaktime observed by an arrival is al&and

is given by\s2/2 [7, p. 188] and we have

W, = sN + R. (10)

Since in a stable system in steady state the average numbssfiges received in a waiting time is
equal to the average number of arrivals in a waiting time (&tian of Little’s law [8], [49]) we have
N = \W = \(W4 + Wy). Substituting this in (10) we obtain

A
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This implies
(11)

Substituting (9) and (11) in (8) yields (7). O

In addition to the average waiting time of a classical M/Gifege given in (1), the queueing delay
also increases due to the collector’s travel.

2.4 Collector Policies

We derive upper bounds on delay by analyzing policies forctikector. The TSPN policy analyzed
in the previous section is stable for all logds< 1 and ha@(ﬁ) delay scaling. Since the lower

bound in Section 2.3 also scales with the Ioaq-é\ﬁ, the TSPN policy has optimal delay scalirig
the following we consider the First Come First Serve (FCH8) the Partitioning policies that can
have better delay properties than the TSPN policy. In paercthe FCFS policy is delay-optimal at
light loads and the Partitioning policy has delay perforoeathat is very close to the lower bound
when the travel and reception times are comparable.

2.4.1 First Come First Serve (FCFS) Policy

A straightforward policy is the FCFS policy where the megsagye served in the order of their arrival
times. A version of the FCFS policy, call FCFS’, where theereer has to return to the center of the
network region (the median of the region for general netwedions) after each message reception
was shown to be optimal at light loads for the DTRP problem T8iis is because the center of the
network region is the location that minimizes the expectethdce to a uniformly distributed arrival.
Since in our system we can do at least as good as the DTRP mgsétt= 0, FCFS’ is optimal also
for our system at light loads. Furthermore, the FCFS poBayat stable for all loads < 1, namely,
there exists a valugsuch that the system is unstable under FCFS policy fgr &ll. This is because
under the FCFS policy the average travel component of thacsetime is fixed, which makes the
average arrival rate greater than the average servicegate-al. Therefore, it is better for a policy
to serve more messages in the same “neighborhood” in ordedtae the amount of time spent on
mobility.

2.4.2 Partitioning Policy

Next we propose a policy based on partitioning the netwagioreinto subregions and the collector
performing a cyclic service of the subregions. This polgwn adaptation of the Partitioning policy
of [8] to the case of a system with wireless transmission. ¥yi&tly derive the delay expression for
this policy and show that it scales with the Ioac@(sl_l—p) as in the TSPN policy.

We divide the network region inte,/2r* x v/2r*) squares as shown in Fig. 2. This choice ensures
us that every location in the square is within the commuiooatistance* of the center of the square.
The number of subregions in such a partitioning is givehilby = A/(2(r*)?). The partitioning in
Fig. 2 represents the caseof = 16 subregions. The collector services the subregions in accycl
order as displayed in Fig. 2 by receiving the messages in salstegion from its center using an
FCFS order. The messages within each subregion are serhadstively, i.e., all the messages in a
subregion are received before moving to the next subregioacollector then receives the messages
in the next subregion exhaustively using FCFS order andatsfhis process. The distance traveled

3 Note that such a partitioning requirggns = /A/(2(r*)2) to be an integer. This may not hold for a given areand
a particular choice of*. In that case one can partition the region using the largesgiption distance* < r* such that this
integer condition is satisfied.
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V2r*

Fig. 2: The partitioning of the network region into squaréregions of side/2r*. The circle with
radiusr* represents the communication range and the dashed linesegp the collector’s path.

by the collector between each subregion is a constant equdRt*. It is easy to verify that the
Partitioning policy behaves as a multiuser M/G/1 systenhwéservations (see [7, p. 198]) where
then, subregions correspond to users and the travel time betweesubregions corresponds to the
reservation interval. Using the delay expression for ma#r M/G/1 queue with reservations in [7, p.
200] we obtain,
As? P
Toart = 12
part 2(1-)*211(1_)\” +5 (12)

wherep = As is the system load. Combining this result with (7) and nothrag the above expression
is finite for all loadsp < 1, we have established the following observation.

Observation 1 The time average delay in the system scale@(a§l7) with the loadp and the Parti-
tioning policy is stable for alp < 1.

Despite the travel component of the service time, we caneael@(ﬁ) delay as in classical
gueuing systems (e.q., G/G/1 queue). This is the fundameéifference between this system and
the corresponding system where wireless transmissiontisseal, as in the latter system the delay
scaling with load i@(ﬁ) [8]. This difference can be explained intuitively as folleviDenote by
N the average number of departures in a waiting time It is ¢éasee from the P-K formula that
in a classical M/G/1 queuéy scales with the load a@( ) We argue that this scaling fa¥ is
preserved in our system but not in [8]. TH& expression as a function oF; in (11) implies that for
any given policy with its correspondiridy;, N can be lower bounded b@‘%. For the system in [8],

the minimum per-message distance the collector moves itititeload regime scales a@(%)
[8]. Intuitively, this is due to the observation that the ress neighbor distance amomig uniformly

distributed points on a square region of aréacales asT@ Therefore, for this system we have

Wy ~ NQ(\/—‘/%) ~ 2(VNA) which givesN ~ Q((l ,,)2) Namely,W; increases with the load
and this results in an extrg/(1 — p) scaling in delay in addition to the/(1 — p) factor of classical
G/G/1 queues. However, with the wireless reception cajpgltihe collector does not need to move
for messages that are inside a disk of ragiuaround it. Since a finite (constant) number of such disks
cover the network regiori}y; can be upper bounded by a constant independent of the syséein |
for example, for the Partitioning policy an easy upper boandV, is the length of one cyclic tour
around the network. Therefore, in our systéfscales ad /(1 — p) as in classical queueing systems.
It is interesting to note that [15] considered the case wimeessages were transmitted to the
collector according to a random access scheme, i.e., tiasisms occur with probability in each
time slot. There the delay scaling m‘( ))2) with load p was obtained as in the system without
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Fig. 3: Delay lower bound vs. network load using differentncounication ranges fod = 200,
8=2,a=4,v=1ands = 1.

wireless transmission. The reason for this is that in orddrave successful transmissions under the
random access interference of neighboring nodes, thetienafstance should be of the same order
as the nearest neighbor distances [15], [23].

2.4.3 Numerical Results-Single Collector

Here we present numerical results corresponding to the/sinah the previous sections. We lower
bound the delay expression in (7) usiBff||U|| — *)*] > E[||U||] — *, where[||U]||] = 0.383v/A

is the expected distance of a uniform arrival to the centsgofre region of ared [8]. Fig. 3 shows
the delay lower bound as a function of the network load foreéased values of the communication
ranger* 4. As the communication range increases, the message detagades as expected. For
heavy loads, the delay in the system is significantly less tha delay in the corresponding system
without wireless transmission in [8], demonstrating thiéedénce in the delay scaling between the
two systems. For light loads and small communication rasipesdelay performance of the wireless
network tends to the delay performance of [8].

Fig. 4 compares the delay in the Partitioning Policy to thiayléower bound for two different
cases. When the travel time dominates the reception tireeddlay in the Partitioning policy is about
10.6 times the delay lower bound. For a more balanced case, henthe reception time is compa-
rable to the travel time, the delay ratio droptd.

3 Multiple collectors - Interference-Free Networks

In this section we extend our analysis to a wireless netwatk multiple identical collectors that
do not interfere with each other. An arriving message issmatted when one of the: collectors
comes within the reception distance of the message locatiohgrants access for the message’s
transmission. Therefore, at a given time there can be at magansmissions in the network. We
consider policies that partition the network region intsubregions. Each collector is assigned to one
of the subregions and is allowed to operate only in its owmesgibn. We call this class of policies the
network partitioning policiesln such a case, there is no interference from nodes witlkistibregion

4 For the delay plot of the no-communication system, the pibiat is not smooth arises since the plot is the maximum of
two delay lower bounds proposed in [8].
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where the transmission is taking place. The only sourceteffierence can be due to transmissions in
other subregions.

The interference-free assumption holds for example if ifpeeding schemes used in different sub-
regions are orthogonal to each other. This can be achievezkémple by having different frequency
bands for transmissions in different subregions. Furtloeenfor networks deployed on a large area,
even if orthogonal signaling is not utilized, the interfiece between subregions can be negligible due
to signal attenuation with distance.

Note that the interference-free assumption is consistertihé purposes of a lower bound on delay
since the interference from neighboring nodes can onlyes® the message reception time. Similar
to the previous section, we assumeanmunication range* for each collector and each reception
takes times.

3.1 Stability

Here we show thagt = As/m < 1is a necessary and sufficient condition for stability of thetem.

3.1.1 Necessary Condition for Stability

A necessary condition for stability of the multi-collectsystem is given by = As/m < 1. We
prove this by showing that the system stochastically dotamthe corresponding system with zero

travel times (i.e., an M/D/m queue, a queue with Poissorals; constant service time andservers)
similar to Section 2.2.

Theorem 4 A necessary condition for the stability of any policyiss As/m < 1. Furthermore, the
optimal steady state time average delgy is lower bounded by

As? m—1s2
T > — — 13
™= 2m2(1 — p) m 2 (13)

wherep = As/m is the system load.
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The proof is similar to the proof of Theorem 1 and is given inpapdix-B. It makes use of the fact
that the steady state time average delay in the system iasitds big as the delay in the equivalent
system in which travel times are considered to be zero (i.e.0).

3.1.2 Sufficient Condition for Stability

Next we establish that < 1 is also sufficient for stability. This can be seen by dividihg network
region intom identical square subregions, and performing a singleectt TSPN policy in each sub-
regior?. Since the arrival process is Poisson, each subregiorvescan independent Poisson arrival
process of intensity/m. Furthermore, each collector performs a TSPN policy inddpatly of the
other collectors. Therefore, using the stability resulthaf single-collector TSPN policy, the systems
in each subregion are stablepik< 1. We state this fact in the following theorem:

Theorem 5 The system is stable under the multi-collector TSPN poticglf loadsp = As/m < 1.

Note that a similar delay analysis to the single-collect8PN case shows that the multi-collector
TSPN policy ha@(ﬁ) delay scaling with the loag.

3.2 Delay Lower Bound

The delay lower bound in (13) neglects the travel componémhe delay. Therefore, we provide
another lower bound for the optimal del&@y;, and take their simple average. The following theorem
states the second lower bound on delay. It is based on theexibynargument that when the travel
component of the waiting time is lower bounded by a constiduet,equal area partitioning of the
network region minimizes the resulting delay expressicer @ area partitionings.

Theorem 6 For the class of network partitioning policies, the optirstdady state time average delay
T is lower bounded by

T > + s, (24)

wherep = As/m is the system load.

Proof Here we use an approach similar to the proof of Theorem 3. Wdelihe average deldy into
three components:

T =Wy + W, + s. (15)

The lemma below provides a bound df;, the average message waiting time due to the collectors’s
travel, using a result from [25] for the-median problem.

max (O’%W/n%r —r*) (16)

v

Lemma 1

Wa

vV

Proof Let (2 beanyset of points inRk with |2| = m. LetU be a uniformly distributed location i
independent of? and defineZ* £ min,cp, | U — v ||. Let the random variabl® be the distance
from the center of a disk of ared/m to a uniformly distributed point within the disk. Then it is@vn
in [25] that

E[f(27)] = E[f(Y)] 17)

5 For simplicity we assume that it is possible to divide theardnto m identical square subregions.
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for any nondecreasing functigif.). Using this result we obtaifijmax (0, Z* —r*)] > E[max(0,Y —
r*)]. Note thatl¥,; can be lower bounded by the expected distance of a uniforirabio the closest
collector at the time of arrival less'. Because the travel distance is nonnegative, we have

Wy > Emax(0,Y — r*)]/v > max0,E[Y] — r*) /v,

where the second bound is due to Jensen’s inequality. Bubs§iE[Y] = %,/% into the above

expression completes the proof. O

Intuitively the best a priori placement of points ini® in order to minimize the distance of a uniformly
distributed point in the region to the closest of these [@imto cover the region with disjoint disks
of areaA/m and place the points at the centers of the disks. Such aipairtig of the region is not
possible, however, using this idea we can lower bound theategd distance as in (16).

We now derive a lower bound di,. Let R', R?, ..., R™ be the network partitioning with areas
AL A2 AT respectivelyE’j”:1 AJ = A). Consider the message receptions in steady state that are
received by collectoj eventually. Let\’ be the fraction of the arrival rate served by collegtoDue
to the uniform distribution of the message locations we have

NoA

A AT
Let N7 be the average number of message receptions for which theages that are served by
collector; waits in steady state. Similarly 1&Y'7 andW; be the average waiting times for messages
served by collectof due to the time spent on message receptions and collgstoavel respectively.
Using (10) and lower bounding the residual time by zero weshav

WSJ > sN7.
Using Little’s law (V7 = M (W7 + WW37)) in a similar way as for (11) we have

) Ms )

The fraction of messages served by collegta A7 /A. Therefore, we can writdV, as

moAT M OAT Mg P

s — —_— J > e ——— J. 1

We=2 TV T (19)
J=1 Jj=1

For a given region?’ with areaA’, W({ is lower bounded by (similar to the derivation of (9)) the
distance of a uniform arrival to the median of the region l€ss

Wi > E[max(0, ||[U — v|| — r*)] > max (0, E[||U — v||]] — r )’ (20)
v v

wherev is the median of?’ and||U — v|| is the distance o/, a uniformly distributed location inside
R, to v. The inequality in (20) is due to Jensen’s inequality forv@nfunctions. A disk shaped
region yields the minimum expected distance of a unifornvalrto the median of the region [25].
Using this we further lower bounid’; by noting that for a disk shaped region of aréa E[||U — v/||]

is just the expected distance of a uniform arrival to the eeat the disk given by§— \/ % Hence

max0, 2,/4% — p* ST
MOV ) ma0,e VAT -1t (21)
v

v
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, FERN S . . .
wherec; = # = 0.376. Letting f(A7) = IA;‘A; , Which is a convex and increasing function of
AL

A7, we rewrite (19) as

" f(AY) ,
we> S Lo VAT — ). 22
(_j:1 A max0, ¢; ") (22)
Next we show that the functiofi( A7) A7max0, c; v A7 — r*) is a convex function ofd’ via the two

lemmas below.

Lemma 2 Let f(.) andg(.) be two convex and increasing functions. The function = f(.)g(.) is
also convex and increasing.

Proof See Appendix C. O

Lemma 3 h(z) = xmax(0, c1v/x — c2) with domain[0, co) is a convex and increasing function of
Z.

Proof See Appendix D. O
Letting g(A7) = f(A7)AImax0, c; VA7 — r*), we have from the lemmas 2 and 3 that the function
g(A7) is convex. Now rewriting (22) we have
m .1 «— ,
s> (—)— AT).
We 2 (g 204
Using the convexity of the functiog( A7) we have

W > (g(Ze ) 4

/A
% max0, cyy/ 2 — 1)

1-— v

P maX(O, cl\/% — r*) . 23)

1—p v

3l

The above analysis essentially implies that Wig expression in (22) is minimized by tlegjuitable
partitioning of the network region. Finally combining (15), (16) and (28) obtain (14). O

Finally, taking the simple average of (13) and (14) we aravthe following theorem.

Theorem 7 For the class of network partitioning policies, the optirstdady state time average delay
T is lower bounded by

. As? max(0, § \ ) m—1s?
T, = + — —+
4m?(1—p) 20(1—p) m  4s

s, (24)

wherep = As/m is the system load.

This expression incorporates both the travel time and thesage reception time components of the
expected delay in the system. Theorem 7 is valid for the dBisstwork partitioning policies. For the
system without wireless transmission, it has been showrptrétioning the region inten equal size
disjoint subregions (one for each collector) preservesr@ity in the high load limit [9], [51]. We
conjecture that this optimality is also preserved in outesys



16 Guner D. Celik, Eytan H. Modiano

Fig. 5: The partitioning of the network region into squar&mgions of side/2r* for the case of
multiple collectors in the network. The circle with raditisrepresents the communication range and
the dashed lines represent one of the collector’s path.

3.3 Multiple Collector Policies

It is easy to show that a generalization of the FCFS policy lvictv we partition the network region
into m subregions and assign each collector to perform the staleetor FCFS Policy in its own
subregion has optimal delay at light loads. The reason fisrrésults is similar to the light load
optimality of the FCFS Policy for the single collector casbe area partitioning has to be done as
follows: We createn Voronoi regions with centers of the regions given by thenedian locatiorfs

of the network region. This policy is not stableas~+ 1 due to the same reason as in Section 2.4.

3.3.1 Generalized Partitioning Policy

Next we propose a policy based on dividing the network regidm m equal size subregions. For
simplicity we assume that it is possible to divide the regiin m identical square subregions. Each
collector is assigned to one of the subregions and is refiderfisr receiving messages that arrive into
its own subregion using the single collector partitioniraigy analyzed in Section 2.4.2. Namely,
first the network region is divided into subregions of arean and then each subregion is divided
into v/2r* x v/2r* squares. The number gf2r* x v/2r* squares in each subregion is giverf by =

2‘?/—37‘2. Fig. 5 represents such a partitioning for the case of follectors in the network with, = 16

squares in each subregion. Since each subregion behantisatlg, the average delay of this policy
is the average delay of the single collector Partitioninticggapplied to a subregion with arrival rate

\/m, aread/m, andn, = 2‘?/@'2:

As? ﬁ - P\/—
T}m’, = 7 2r* ’ 25
P = =) T 20— p) VT (29)
wherep = A\s/m is the system load. This result, when combined with (13pldisthes that for the
case of multiple collectors in the system the delay scaliith e load is@(ﬁ). This is again a

6 The set ofm-median locations for a region is the set of the basa priori locations in the region that minimizes the
expected distance to a uniform arrival.

7 As for the single collector Partitioning policy, we note thia,/ns = +/(A/m)/(2(r*)2) is not an integer, one can
partition the region using the largest reception distatice: »* such that this integer condition is satisfied.
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fundamental improvement compared to tﬂéﬁ) delay scaling in the system without wireless
transmission and with multiple collectors in [9].

3.3.2 Numerical Results

We compare the delay lower bound in (24) to the delay lowemban the corresponding system
without wireless transmission in [9] for the case of two eotbrs in Fig. 6. The delay in the two-
collector system is significantly below the delay in the sgstvithout wireless transmission and this
difference is more pronounced for high loads. Fig. 7 displ#ne delay lower bound in (24) and the
delay of the Partitioning policy in (25) as functions of tretwork loadp. The delay of the Partitioning
policy is aboutr times the delay lower bound.
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4 Multiple Collectors - Systems with Interference Constrants

In this section we consider systems in which simultaneaassmissions to different collectors in-
terfere with each other. Interference between simultasé@nsmissions occurs if the collectors do
not use orthogonal signaling. At each point in time, the prbis to dynamically determinmessage
pick up locationgor the collectors and also to efficiently route the collesto these pick up locations
based on the current collector configuration and the numfagiessages present in different parts of
the network region. The objective is to minimize the expécteessage waiting time in the system.
This is a joint scheduling and euclidian vehicle routingtgemn which has not been considered previ-
ously.

Here we obtain preliminary results for this problem by engitiag the scheduling aspects of
the problem through fairly general interference constsaamd simplifying the mobility aspect of the
problem by discretizing the collectors’ motion. We chaeaizie the stability region of the system in
terms of interference constraints. We show that a frame<buasrsion of the Max-Weight scheduling
policy [11], [46], can stabilize the system whenever it &bdlizable and we derive an upper bound on
the average delay under this policy.

First we explain the model in more details. Similar to thevjyes section, considern. collectors
in a square regiofR of areaA receiving data messages that arrive in time according toiss®o
process of intensity. Upon arrival the messages are distributed independentyuaiformly in R
and an arriving message is transmitted when a collector santhin thereception distancer*, of
the message location and grants access for the messagsisigaion. We assume that time is slotted,
t = 0,1,2,..., where the slot length is equal to one message transmigsienst We consider a
partitioning of the network region into a grigiof (’—ﬂxQ—E) squares, i.e K = W square cells of
diameten* as shown in Fig. 8. The collectors are confined to move on the gfidnd simultaneous
transmissions to different collectors are subject to fietence constraints defined below.

Definition 3 (Cell Interference Model) Given a collector that is at the intersection of (at most) 4
adjacent cells, a transmission to the collector from onehefaells is successfully received if there is
no other transmission within the other cells adjacent todbkector.

The Cell Interference Model essentially createsacdlusion regiorof 4 cells around a collector re-
ceiving a message. Similar interference models have begsidered in literature. For example, the
Protocol Model considered in [24], [43] assumes succes$sinbmission if a disk region around the
receiver has no other transmission. Similarly, the Vulbgitg Circle Model considered in [16] or the
Disk Reception Model considered in [15] require an exclosigion around receivers for successful
reception.

The Cell Interference Model essentially creakésells which can be treated as “users” in a multi-
user queue withn servers. Assume a fixed ordering of these subregions. Die teplitting property
of the Poisson process, each cel= 1,2,..., K, receives Poisson arrivals with rale = \/K.
Let A;(t) denote the number of messages that arrive intoiclltime slott. The expectedoad
entering cell per time slot is given by, = \;s. Furthermore, letV;(¢) be the number of messages
present in cell at the beginning of time slat We haveN(t) = [Ny (t),..., Ng(¢t)] and N(t) =
Ni(t) + ... + Nk (t), whereN(t) is the total number of messages in the system at the begiohing
time slott. We assume that the system is initially empty, therefg(6) = 0.

Next we characterize the interference constraints of tetegy in terms oéctivation vectorsWe
call a cellactiveif at least 1 message in the cell is scheduled for transnmisaizd we assume that each
cellk = 1,2,..., K is associated with exactly one pick up location on the gridror instance, the
pick up location for each cell could be the upper left corrfehe cell as shown in Fig. 8. Therefore,
specifying the set of cells to activate also specifies thatlons of the collectors. A feasible activation

8 Similar to the previous sections, K = W is not an integer, one can partition the region using theektrgeception
distancer* < r* such that this integer condition is satisfied.
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Fig. 8: The network model. Red regions are the exclusionzéorghe servers currently in service. 2
Servers are forced to be inactive since the queue in theiriyiare in the exclusion zone of another
server.

vectorI € 7 is the one under which the transmissions from the set ofectlis do not interfere with
each other, wheré is the set of all feasible activation vectors. If cellk = 1, ..., K, is active under
activation vectol, then we havd(k) = 1, otherwisel(k) = 0. The setZ consists of -dimensional
vectors of at mosin nonzero entries. Furthermore, because transmissionseegquexclusion zone
of up to 4 adjacent cells, the number of nonzero entries abvenZ is typically less thamn. Note
that we include the zero vectbr= 0 in Z for convenience.

An alternative way of modeling the interference constsaistto have al by K matrix for each
activationlI. In this representation every column of the mafrigorresponds to a single cell and the
different rows in a column vector specifies the position ef¢bllector responsible for serving the cell.
Therefore, for a given matrik, at most one element of a column vector can be nonzero. Th&xmat
activation model is more complex, however, it does not negthie extra assumption that each cell is
associated with a single pick up location. Here we presenterults in terms of the simpler vector
activation model for ease of exposition.

Let T’ denote the number of time slots required for a collector teerfoom the lower right corner
of the gridg to the upper left corner @. We callT’. thereconfiguration timef the network. Consider
the corresponding system with infinite speed, il&.= 0. This system is essentially a parallel queuing
system with with multiple servers and interference commstsawhich is a special case of the system
considered in [38] or [46]. Wheff;, = 0, the stability region of this systen\°, consists of the
closure of all load vectorp = [p1, p2, ..., pr|’ = s[A\1, Ao, ..., Ak’ in the convex hull of the vectors
inZ[12],[37],i.e.,

A° = {p|p € Conv{Z}}. (26)

The celebrated Max-Weight scheduling algorithm was intaedi in [46] and was shown to be
throughput optimal for the system with zero reconfiguratiore. Specifically, the Max-Weight policy
activates the set of usersih(¢) where

I*(t) = arg max N(t).I (27)

WhenT,. > 0, we lose service opportunities during the reconfigurafimes. Therefore, the stability
region of our system can be no larger that

Lemma 4 An outer bound on the stability region is given by

A CAO.
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The analysis in the next section shows that we have A°. The intuition behind this is that, under
throughput-optimal policies, as the load approaches thedary of the stability region, the fraction
of time spent to reconfiguration tends to zero.

4.1 Framed-Max-Weight Policy

For systems with nonzero reconfiguration times, the MaxgWepolicy is not throughput-optimal
[11], [12]. The intuitive reason behind this is that the Makight policy gives decisions to change
the schedule too frequently, resulting in throughput-thasng the reconfiguration intervals. A frame
based version of the Max-Weight policy where the same sdhaslused throughout the frame incurs
less throughput loss during the reconfiguration intervatieed, single hop optical networks with in-
terference constraints and nonzero reconfiguration tinege wonsidered in [11], where a frame-based
version of the Max-Weight policy was shown to be throughpptimal asymptotically in the frame
length. Fluid limit of the system was considered in [11] amwtighput-optimality was established un-
der rate stability. Furthermore, atNx N switch with matching constraints and reconfiguration delay
was considered in [12], where a policy based on servicinghest of arrivals over frames accord-
ing to the Max-Weight activation vector was shown to be tigitput optimal asymptotically in the
frame length. In fact, we show that the frame-based Max-WeigMW) policy proposed in [11] is
throughput-optimal asymptotically in the frame lengthodisr the system considered in this section.
Different from the analysis in [11] and [12], we prove thisu#é using classical quadratic Lyapunov
drift techniques. The reason that the FMW policy stabilites system is that as the system load
approaches the boundary of the stability region, the paitploys good schedules, i.e., maximum-
weight schedules, over longer frame lengths, effectivelyrdasing the fraction of throughput lost to
reconfiguration to zero.

Under the FMW policy the time is divided into intervals of gghT" slots. The FMW policy picks
the activation vector corresponding to the Max-Weight apnfation at the beginning of each frame.
Then it idles the system fdF,. slots to ensure that all the servers travel to their assi¢meations.
Then the policy applies this activation vector f6r— T,. slots. The choice of the frame lengih
depends on the logd. Specifically, the policy requirés > T;./e wheree is determined by solving
the Linear Program below [11].

e(p) £ max (1 - Z oq)

IeZ
subjectto p; = Ais < Y oq(i), i € {1,... K}

IeT
Zoq <1

IeT
ar >0, VIeT. (28)

Note thate is a measure of distance of the load vector to the boundaheddtability region [11]. The
FMW policy is described in Algorithm 2 in detail.

Theorem 8 Foranyp = [p1, ..., px]’ strictly insideAo, the FMW policy stabilizes the system as long
asT > Lc,

The proofis in Appendix E. A similar resultis proved in [1®ffthe fluid limit of this system establish-
ing the rate stability. The proof in Appendix E is based on adyatic Lyapunov drift argument over

9 A queue of lengthV; (¢) at timet is rate stable ifim;— .o N;(t)/t = 0. This is a weaker notion of stability as compared
to the stability definition in 1 which implies bounded first ments of a stationary measure.
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Algorithm 2 Framed-Max-Weight Policy

1: Find the Max-Weight configuration for the servers based emjieue lengths at the beginning of
the frame: Assuming the system is at #th frame, find

I*(t) = arg max N(kT).1. (29)

2: Let the users be idle fdF,. slots and reconfigure the collectors to their new locations.
3: Apply the activation vectol* for 7' — T;. slots wherel" > TT

a sufficiently long frame of duratioi. Let ¢, be the first slot of théth frame. The proof establishes
that theT'-step expected drift of the queue lengths satisfies

E [L(N(ty +T)) — L(N(tx))|N(ty)] < KBT? — —(e — — ZN (t), (30)
where 23
are outS|de a bounded set fora sufﬁuently large frame Fewgiich implies bounded expected queue
sizes [37].

The following corollary follows from Theorem 8 and Lemma 4.

Corollary 1 We have
A = Aop.

Note that the overall arrival ratg is given byA = A\ + ... + Ax where), = \/K for k =
1,..., K. Therefore, the necessary and sufficient stability cooliting = As is p < p wherej is the
intersection of the<-dimensional regior\ with the linep; = ... = px = p/ K.

4.2 Delay Analysis

In this section we derive an upper bound on the expected nuaflbreessages in the system. Note

that through Little’s law, the expected delay in the systemrbportional to the expected number of
messages in the system. Taking the expectation of (30) beetistribution ofN(£T") we have

E[L(N(tx +T))] — E[L(N(t))] < KBT? — = (e — == ZE

We write a similar drift expression fdr = 0,1, ..., M — 1, and sum ovek to obtain a telescoping
series that gives

M-—1
E[L(N(ty))] — E[L(N(0))] € MKBT? — (e — == Z SCE[N;

wheretyy1 =t + 7,k = 0,1, .... Dividing by M and usingL(N(¢57)) > 0 andL(IN(0)) = 0 we

have
;J(E ——ZZE k)gKBTQ.

Taking thelim sup asM — oo we have

K?TB
hmsup— Z ZE m

M—o0
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Noting that) ", N;(t) = N(¢) thatis the total number of messages in the system at time si@have

K2TB
li — IE _ . 31
msup 7 Z S Se—T/T) (51)

Now for any givert € {t,tx+1 — 1} we have

T-1
N(t) < N(t) + )Y  Ailte +7).

=0 1

Summing over the time slots within tieh frame and taking conditional expectation we have for any
t e {tk,thrl — 1}

ZE (tr -+ 7)N(t)] < TN(tr) +T22)\ s,

where we used the fact that arrival processes are i.i.d. radependent of the queue lengths. Using
A =Y. \;, taking expectation with respect M(¢;,), writing similar expressions fak/ frames and
summing them we obtain

MT-1

M—
MT Z E [N Z )] + Tp.

k=0

Finally, taking thelim sup asM — oo and using (31) we have

t—1

1 K°TB
li —E EIN)| < 7777 + T
1msuptT:0 [ ()]—Z(G_E/T)—’_ Ps

Using this expression it can be shown that [37]

K?TB
limsup E [N (t)] <

— +T'p.
t—o00 B 2(6 - TT/T) P

For large frame lengths such tHAt>> T,., the delay scaling is approximately proportionall{t,
wheree is a measure of the distance of arrival rate to the boundatiyeo$tability region. Note that
when the reconfiguration interval is large, large frametes@ >> ;. may be required for achieving
throughput-optimality, which, on the other hand, increatbe expected delay as the delay under the
FMW policy is proportional to the frame length.

5 CONCLUSION

In this paper we considered the use of dynamic vehicle rgutirorder to improve the throughput
and delay performance of wireless networks where messagem@ randomly in time and space
are gathered by mobile collectors via wireless commuroeati For the case of a single collector,
we characterized the stability region of this system to besydtem loadsy < 1. We developed

fundamental lower bounds on time average expected delaylerided upper bounds on delay by
analyzing TSPN and Partitioning policies. For the case dfipie collectors whose communications
do not interfere with each other, we extended the stabilitgt delay scaling results of the single
collector case. Our results show that combining contrattedbility and wireless transmission results
in Q(Tlp) delay scaling with loagh. This is the fundamental difference between our system faad t
system Withoutwireless transmission (DTRP) analyzedJiaf@l [9] where the delay scaling with the
load is @( ) Finally, for the the case where simultaneous transmissiomifferent collectors
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interfere with each other we formulate a scheduling probderh characterize the stability region of
the system in terms of interference constraints. We shotatirame-based version of the Max-Weight
policy is throughput-optimal asymptotically in the franemfith and derive an upper bound on average
delay under this policy.

This work is a first attempt towards utilizing a combinatidncontrolled mobility and wireless
transmission for data collection in stochastic and dynamiieless networks. Therefore, there are
many related open problems. In this paper we have utilizethpls wireless communication model
based on a communication range. In the future we intend ttyshore advanced wireless communi-
cation models such as modeling the transmission rate asctidarof the transmission distance. For
the case of multiple-collectors whose transmissions agstito interference constraints, we intend
to study interference models that do not restrict the ctilst motion to a grid. Note that such a
joint server routing and scheduling problem is significantlore involved. For instance, the stability
region of such a system depends on the interference cartstrand it is unknown since there are
uncountably many possible activation vectors.

Appendix A - Proof of Theorem 1

We first show that the unfinished work and the delay experibgea message in the system stochas-
tically dominates that in the equivalent system with zeawét times for the collector.

Lemma 5 The steady state time average delay in the system is at lsdsigaas the delay in the
equivalent system in which travel times are considered twehe (i.e.v = o).

Proof Consider the summation of per-message reception and tiaes,s andd;, as the total service
requirement of a message in each system. Silade zero for alli in the infinite speed system and
since the reception times are constant equalftw both systems, the total service requirement of each
message in our system is deterministically greater tharoftthe same message in the infinite speed
system. LetD; andD;, i = 1,2..., be the departure instant of tii¢ message in the original and the
infinite speed system respectively. Similarly }et, i = 1,2... be the arrival time of the!” message
in both systems. We will use induction to prove tliat > D; for all i. We trivially haveD; > D/l.
Furthermore,

An—l—l S Dn,+1 - S, (32)

hence then + 1" message is available before the tithg,; — s. Using the induction hypothesis,
D, > D, _,we have

n?

D, < Dy, < Dy — s,

where the second inequality is because we need atdeasbunt of time between theé” andn + 1"
transmissions. Hence the collector is available in theitefispeed system before the timfg, 1 — s.
Combining this with (32) proves the induction.

Now let D(t) and D’ (t) be the total number of departures by titrie our system and the infinite
speed system respectively. Similarly [€(t) and N '(t) be the total number of messages in the two
systems at time. Finally let A(¢) be the total number of arrivals by tinteén both systems. We have
A(t) = N(t)+D(t) = N'(t)+ D' (t). Using the result of the above induction we hdvg) < D' (t)
and therefore

N(t) > N ().
Since this is true at all times, we have that the time averameber of customers in the system is
greater than that in the infinite speed system. Finally ukititg’s law proves the lemma. O

Since the infinite speed system is an M/G/1 queue (an M/G/ligjisea queue with Poisson arrivals,
general i.i.d. service times and 1 server and an M/D/1 quasecbnstant service times), the average
waiting time in this system is given by the Pollaczek-KhiimofiP-K) formula for M/G/1 queues [7, p.
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189],i.e.,As%/(2(1 — \s)). Therefore we have (1). Furthermore, a direct consequeitbésdemma

is that a necessary condition for stability in the infinitesg system is also necessary for our system.
It is well-known that the necessary (and sufficient) condifior stability in the M/G/1 queue is given
by p < 1 (seee.qg., [7] or [22]). O

Appendix B - Proof of Theorem 5

The proof is similar to the proof of Theorem 1. First consither following lemma.

Lemma 6 The steady state time average delay in the system is at lsdsigaas the delay in the
equivalent system in which travel times are considered twehe (i.e.v = o).

Proof Similar to the proof of Lemma 5, the total service requiretrtdra given message s + d;, is
deterministically greater than that of the same messadeimfinite speed system. Similarly, |8
andD;, andA;, i = 1,2, ..., be the departure and arrival instants of tfemessage in the original
and the infinite speed system. We esenplete inductioto prove thatD; > D7 for all 7. We trivially
haveD; > D;. Assume we hav@®; > D, for all i < n. We need to show tha,,,; > D, , in
order to complete the complete induction. We have

Any1 < Dpyy — s, (33)
hence the, 4 1** message is available at tinig,  ; — s. We also have
D’/I7,+1—77L < DnJrl*m < DnJrl - S.

The first inequality is due to the complete induction hypsib@nd the second inequality is due the
fact that them!” last departure before the+ 1** departure has to occur before the tibig ; — s.
Hence there is at least one collector available in the igfisjteed system before the tifg ; — s.
Combining this with (33) proves the complete induction.

Similar to the proof of Lemma 5, léd(¢), D' (¢) andN (¢), N'(t) be the total number of departures
from the two systems by timeand the total number of messages waiting for service in tbesfistems
at timet respectively. Also letA(¢) be the total number of arrivals by tintén both systems. We have
A(t) = N(t)+D(t) = N'(t)+D (t). From the above induction we hait) < D'(t) and therefore
N(t) > N (t). Since this is true at all imes, we have that the time avenageber of customers in the
system is greater than that in the infinite speed systemllfringing Little’s law proves the lemma.

O

When the travel time is considered to be zero, the systenmhesan M/D/m queue (a queue with
Poisson arrivals, constant service time amdervers). Therefore we can boufigl using bounds for
general G/G/m systems. In particular, the waiting tifig /., in a G/G/m queue with service time
s is bounded from below by [28, p. 48]

WG/G/m EW_—_a (34)

wherelV is the waiting time in a single server system with the samieaisras in the G/G/m queue and
service times/m. Since in our case the infinite speed system behaves as ami{Btem}i’ has an
exact expression given by the P-K formuli: = \s2/(2m2(1 — p)) wherep = As/m. Substituting
this in (34) and using Lemma 6 we have (13).
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Appendix C - Proof of Lemma 2

Clearlyh(.) = f(.).g(.) is increasing. Let andy be two points in the domain éf and letoa € (0, 1)
be a real number.
haz + (1 - a)y) = flaz+ (1 - a)y)glar + (1 - a)y)
< (af(x) + (1 —a)f(y))(ag(z) + (1 - a)g(y))
= o’ f(z)g(x) + (1 — @)’ F(y)g(y) + a(l—a) f(x)g(y) +a(l—a) f(y)g(z),

where the inequality is due to the convexity pfandg. We add and subtractf(x)g(x) and after
some algebra obtain

hlax + (1 —a)y) < ah(z)+ (1 —a)h(y) +a(l —a)(f(z) = f¥)(9(y) — 9(z))
< ah(x) + (1= a)h(y),

where the last inequality is due to the fact tliaindg are increasing functions.

Appendix D - Proof of Lemma 3

It is clear thath(z) is an increasing function af. Letz,y > 0 be two points in the domain df and
leta € (0,1) be a real number.

hoar+ (1 —a)y) = = (ax + (1 — a)y)max0, c;/ax + (1 — )y — 2
= max0, ¢ (ax + (1 — a)y)% —ca(ax + (1 —a)y

)
)
< max(0, cl(oza:% +(1- oz)y%) —cz(ax + (1 — a)y))
=max(0, az(c1vVz — ¢2) + (1 — a)y(c1v/y — c2))

< max(0, az(c1vVz—c2)) +max(0, (1—a)y(c1/y—c2))
= ah(z) + (1 —a)h(y),

where the first inequality is due to the convexity of the fimict: 2. This shows thab(z) is a convex
and increasing function.

Appendix E - Proof of Theorem 8

We prove Theorem 8 for a broader class of arrival processeasaume that each célhas an arrival
processd;(t) that is i.i.d. over time and that satisfi§A; ()] < A2, independent of the number
of messages in the system, which is satisfied if the ovenalladprocess into the system is Poisson.
Note that we havéE[A;(t)] = \;s independent of the number of messages in the systen,|.et
k = 0,1, ..., be the first time slot of th&*" frame. LetD;(t), t € {t + T}, 1,41 — 1}, bel if cell

i is scheduled to be active during th€" frame and zero otherwise. Note tha{(t) is the service
opportunitygiven to celli at time slott and not the actual departure process.Ngtt) be the number
of messages in cellat the beginning of the time slét Recall that for simplicity we assume that the
departures occur before the arrivals which takes placesatitid of time slots. We have the following
gueue evolution relation.

Ni(t + 1) = max {N7(t) — Di(t), 0} + A7(t)

Similarly, the followingT'-step queue evolution expression holds:

T-1

T—1
Ni(tk +T) < max {]\ﬂ(tk) — Z Di(tk —i—T),O} + Z A7(tk +T).
7=0

7=0
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The inequality is due to the fact that célinight become empty and that some arrivals depart during
the frame. Squaring both sides we have,

T-1 2 T-1 T-1 T-1
(Ni(tx+ D)= (Ni(t))* < (3 Ditam)) +( Y Astt+r) ) —2N;(t (Z Dy(t+7)— Z Ayt )
7=0 7=0
(35)
Define the quadratic Lyapunov function
K
L(N(ty)) = > N2(tx),
i=1

and theT-step conditional Lyapunov drift
Ar(te) £ E{L(N(ty + T)) — L(N(t))|N(ts) } -

Summing (35) over the queues, taking conditional expextatisingD;(t) < 1 for all time slotst,
E{A;(t)?} < A2 andE{4;(t1)A;(t2)} < VE{A;(11)}2E{A;(12)}? < A2, forall 7, andr, we
have

T-1
Ap(ty) < KBT?+ 2K {Z Ni(tr) > [Ailtx +7) — Di(ty +7)] \N(tk)}
7 7=0

=0

T-1
= KBT?+2T )  Ni(ti)his —2 ) Ni(tx)E { > Dtk + T)|N(tk)}

whereB = 1+ A2 _is a constant. Note thd;(¢t+7) = 0,Vi € {1,...,K}forr € {0,1,..., T, — 1}

since the system is idle for the fir$t slots of the frame under the FMW policy. Therefore,

T-1
Ar (tk)<NBT2+2TZN (tr)Ais — 2D > Ni(tr)E {D;(t + 7)|N(tx) }
i =T,

Now using the fact that for any load vectpr= s that is strictly insideA?, there exist real numbers

ai, ...,z such thaty; > 0,Vj € 1,...,|Z], Z‘f‘l a; =1 — e for somee > 0 and

iz
= Z OZjIJ
j=1
wherel/ is aK dimensional vector iff. Over the time intervalt + T;.,¢ + T — 1], the FMW policy
applies the activation vector that has the property
I (ty) = argItIaEaIXN(tk).I. (36)
Therefore) ", N;(t,)D;(tr + 7) = N(tx).I*(tx). Hence we have

||
T,
Arp(ty) < KBT? 4 2T N(ty,). (Z ajlﬂ) —2T(1 - ?)N(tk) T*(t)

IZ] |Z|

= KBT? =21 " a;(N(tx) I (t) — N(t).F) = 20(1 = Y 0 )N(t5). I (t) + 27N () I (15,
Jj=1 j=1

< KBT? — 2TeN(ty).T*(t) + 2T, Nt ).1* (1)

= KBT? — 2T (e — T?)N(tk) I*(tx) (37)
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Note that we havéN(t;).I*(tx) > + >, Ni(tx) since the maximum weight schedule has more

weight than the average. Therefore, Tor> TT we have
AT(tk) < KBT2—2T(€— 2)iZN(tk) (38)
v — T K - K3 c ).

Therefore, thel'-step conditional Lyapunov drift is negative’ff > TT and if the queue sizes are

outside a bounded set. The stability result now follow fr@&8][or Section 4.2.
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