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Abstract We consider the use of controlled mobility in wireless networks where messages arriving
randomly in time and space are collected by mobile receivers(collectors). The collectors are responsi-
ble for receiving these messages via wireless communication by dynamically adjusting their position
in the network. Our goal is to utilize a combination ofwireless transmissionandcontrolled mobility
to improve the throughput and delay performance in such networks. In the first part of the paper we
consider a system with a single collector. We show that the necessary and sufficient stability condition
for such a system is given byρ < 1 whereρ is the average system load. We derive lower bounds
for the average message waiting time in the system and develop policies that are stable for all loads
ρ < 1 and have asymptotically optimal delay scaling. We show thatthe combination of mobility and
wireless transmission results in a delay scaling ofΘ( 1

1−ρ) with the system loadρ in contrast to the

Θ( 1
(1−ρ)2 ) delay scaling in the corresponding system where the collector visits each message loca-

tion. In the second part of the paper we consider the system with multiple collectors. In the case where
simultaneous transmissions to different collectors do notinterfere with each other, we show that the
stability condition is given byρ < 1, whereρ is the system load on multiple collectors. We develop
lower bounds on delay and generalize policies established for the single collector case to multiple
collectors case. We show that the delay scaling ofΘ( 1

1−ρ ) extends to the case of multiple collectors,

in contrast to theΘ( 1
(1−ρ)2 ) delay scaling in the corresponding multi-collector systemwithout wire-

less transmission. We also consider the case where simultaneous transmissions to different collectors
interfere with each other. We characterize the stability region of the system in terms of interference
constraints. We show that a frame-based version of the well-known Max-Weight policy is throughput-
optimal asymptotically in the frame length and derive an upper bound on average delay under this
policy.
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Fig. 1: The system model for the case of a single collector. The collector adjusts its position in order to
receive randomly arriving messages via wireless communication. The circles with radiusr∗ represent
the communication range and the dashed lines represent the collector’s path.

1 Introduction

There has been a significant amount of interest in performance analysis of mobility assisted wire-
less networks in the last decade (e.g., [21], [23], [33], [32], [41], [43] [44], [49], [50], [52]). Typically,
throughput and delay performance of networks were analyzedwhere nodes moving according to a ran-
dom mobility model were utilized for relaying data (e.g., [20,21,23,32,39]). More recently, networks
deploying nodes with controlled mobility have been considered focusing primarily on route design and
ignoring the communication aspect of the problem (e.g., [13], [21], [33], [44], [49], [26], [50], [53]).
In this paper we explore the use ofcontrolled mobilityandwireless transmissionin order to improve
the throughput and delay performance of wireless networks.We consider a dynamic vehicle routing
problem where a vehicle (collector) uses a combination of physical movement and wireless reception
to receive randomly arriving data messages.

Our model consists of collectors that are responsible for gathering messages that arrive randomly
in time at uniformly distributed geographical locations. The messages are transmitted when a col-
lector is within their communication distance and depart the system upon successful transmission.
Collectors adjusts their positions in order to successfully receive these messages in the least amount
of time as shown in Fig. 1 for the case of one collector. This setup is particularly applicable to net-
works deployed in a large area so that mobile elements are necessary to provide connectivity between
spatially separated entities in the network [13], [26], [33], [52]. For instance, this model is applicable
to a densely deployed sensor network where mobile base stations collect data from a large number
of sensors densely deployed inside the network, [27], [33],[44], [52], [53]. Another application is
utilizing Unmanned Aerial Vehicles (UAVs) as data harvesting devices or as communication relays on
a battlefield environment [18], [41], [26], [53]. This modelalso applies to networks in which data rate
is relatively low so that data transmission time is comparable to the collector’s travel time, for instance
in underwater sensor networks [1], [45].

Vehicle Routing Problems (VRPs) have been extensively studied in the past (e.g., [2], [6], [8], [9],
[10], [17], [18], [34], [49], [50], [51]). The common example of a VRP is the Euclidean Traveling

A preliminary version of this paper was presented in IEEE CDC’10, Dec. 2001 [14].
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Salesman Problem (TSP) in which a single server is to visit each member of a fixed set of locations on
the plane such that the total travel cost is minimized. Several extensions of TSP have been considered
in the past such as stochastic demand arrivals and the use of multiple servers [2], [8], [9], [18]. In
particular, in the TSP with neighborhoods (TSPN) problem the vehicle is to visit a neighborhood of
each demand location [6], [17], [34], which can model a mobile collector receiving messages from a
communication distance. A more detailed review of the literature in this field can be found in [9], [34]
and [51].

Of particular relevance to us among the VRPs is the Dynamic Traveling Repairman Problem
(DTRP) due to Bertsimas and van Ryzin [8], [9], [10]. DTRP is astochastic and dynamic VRP in
which a vehicle is to serve demands that arrive randomly in time and space. Fundamental lower bounds
on delay were established and several vehicle routing policies were analyzed for DTRP for a single
server in [8], for multiple servers in [9], and for general demand and interarrival time distributions
in [10]. Altman and Levy [2] considered a similar problem termedqueuing in spaceand and proposed
stabilizing algorithms. Later, [49], [50] generalized theDTRP model to analyze Dynamic Pickup and
Delivery Problem (DPDP) where fundamental bounds on delay were established. We apply the DTRP
model to wireless networks where the demands are data messages to be transmitted to a collector
which is capable of wireless communication1. In our system the problem has considerably different
characteristics since in this case the collector does not have to visit message locations but rather can
receive the messages from a distance using wireless communication. The objective in our system is
to effectively utilize this combination of wireless transmission and controlled mobility in order to
minimize the time average message waiting time.

In a closely related problem where multiple mobile nodes with controlled mobility and communi-
cation capability relay the messages of static nodes, [43] derived a lower bound on node travel times.
Message sources and destinations are modeled as static nodes in [43] and these nodes have saturated
arrivals hence queuing aspects were not considered. In an independent work, [27] considered utiliz-
ing mobile wireless servers as data relays on periodic routes and applied various delay relations from
Polling models to this setup. A mobile server harvesting data from spatial queues in a wireless net-
work was considered in [41] where the stability region of thesystem was characterized using a fluid
model approximation. In [15] we analyzed a one-collector model similar to the current paper but for
which the arriving messages were transmitted to the collector using a random access scheme, creating
interference among neighboring transmissions. In this paper, the message transmissions are sched-
uled, i.e., there is only one transmission in the system at a given time, and the collector decides on the
message to be transmitted next. The two systems have considerably different characteristics as will be
explained in the following sections.

Another related body of literature lies in the area of utilizing mobile elements that can control
their mobility to collect sensor data in Delay Tolerant Networks (DTN) (e.g., [13, 33, 44, 45, 52, 53]).
Route selection (e.g., [33], [44], [53]), scheduling or dynamic mobility control (e.g., [13], [45], [52])
algorithms were proposed to maximize network lifetime, to provide connectivity or to minimize delay.
More detailed surveys of the related work in the area of utilizing mobility in DTN and Sensor Net-
works can be found in [45] and [53]. These works focus primarily on mobility and usually consider
particular policies for the mobile element. To the best of our knowledge, this is the first attempt to de-
velop fundamental bounds on delay in a system where a collector is to gather data messages randomly
arriving in time and space usingwireless communicationandcontrolled mobility.

In the first part of the paper we consider a system with a singlecollector and extend the results
of [8] for the DTRP problem to the communication setting. In particular, we show thatρ < 1 is
the necessary and sufficient condition for the stability of the system whereρ is the system load. We
derive lower bounds on delay and develop algorithms that areasymptotically within a constant factor
of the lower bounds. We show that the combination of mobilityand wireless transmission results in
a delay scaling ofΘ(1/(1 − ρ)) in contrast to theΘ(1/(1 − ρ)2) delay scaling in the system where

1 In previous works such as [2], [8], [9], the collector needs to be at the message location in order to be able to serve it,
therefore, we will refer to the DTRP model as the system without wireless transmission.
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the collector visits each message location analyzed in [2],[8]. In the second part of the paper we
consider the system with multiple collectors under the assumption that simultaneous transmissions to
different collectors do not interfere with each other. We show that the necessary and sufficient stability
condition is still given byρ < 1, whereρ is the load on multiple collectors. We develop fundamental
lower bounds on delay in the system and generalize the single-collector policies analyzed in the first
part to the multiple collectors case. Finally we consider a multiple-collector system under interference
constraints on simultaneous transmissions to different collectors. We formulate a scheduling problem
and characterize the stability region of the system in termsof interference constraints on simultaneous
transmissions. We show that a frame-based version of the seminal Max-Weight scheduling policy can
stabilize the system whenever it is stabilizable and we derive an upper bound on average delay under
this policy.

This paper is organized as follows. In Section 2 we consider the single collector case. We present
the model in Section 2.1, characterize the necessary and sufficient stability condition in Section 2.2,
derive the delay lower bound in Section 2.3, and analyze single-collector policies in Section 2.4. In
Section 3 and the subsections therein we extend the results for a single collector to systems with
multiple collectors whose transmissions do not interfere with each other. In Section 4 we consider the
system with interference constraints on simultaneous transmissions to collectors. We first present the
model and characterize the stability region, and then analyze the frame based Max-Weight policy in
Section 4.1 and propose an upper bound on the delay performance of this policy in Section 4.2.

2 Single Collector

In this section we consider the case of a single collector anddevelop fundamental insights into the
problem. We extend the stability and the delay results in [2]and [8], established for the system where
the collector visits each message location, to systems withwireless transmission capability. We show
that the combination of mobility and wireless transmissionresults in a delay scaling ofΘ( 1

1−ρ ) with

the system loadρ in contrast to theΘ( 1
(1−ρ)2 ) delay scaling in the corresponding system without

wireless transmission in [2] and [8].

2.1 Model

Consider a square regionR of areaA and messages arriving intoR according to a Poisson process (in
time) of intensityλ. Upon arrival the messages are distributed independently and uniformly inR and
they are to be gathered by a collector via wireless reception. An arriving message is transmitted to the
collector when the collector comes within thereception distanceof the message location and grants
access for the message’s transmission. Therefore, there isno interference power from the neighboring
nodes during message receptions.

We assume a Disk Model (or communication range model) [16], [24] for determining successful
message receptions. Letr∗ be thereception distanceof the collector. Under the disk model, a trans-
mission can be received only if it is within a disk of radiusr∗ around the collector. Note that the Disk
Model is similar to the Signal to Noise Ratio (SNR) packet reception model [16], [23], [24], termed
the SNR Model, under which a transmission is successfully decoded at the collector if it’s received
SNR is above a thresholdβ. To see this, ifPT is the constant transmit power level of a transmis-
sion at distancer away from the collector, due to distance-attenuation, the received power satisfies
PR = PT r

−α [16], [23], [24], whereα is the power loss exponent. Therefore, under the SNR Model,
a transmission at distancer to the collector is successful ifr ≤ r∗

.
= (PT /(PNβ))1/α, showing the

equivalence to the Disk Model. Under the Disk Model, if the location of the next message to be re-
ceived is withinr∗, the collector stops and attempts to receive the message. Otherwise, the collector
travels towards the message location until it is within a distancer∗ away from the message. Under the
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disk model, transmissions are assumed to be at a constant rate taking a fixed amount of time denoted
by s.

The collector travels from the current message reception point to the next message reception point
at a constant speedv. We assume that at a given time the collector knows the locations and the arrival
times of the messages that arrived before this time. The knowledge of the service locations is a standard
assumption in vehicle routing literature [2], [6], [8], [17], [18], [29], [34], [49].

LetN(t) denote the total number of messages in the system at timet.

Definition 1 (Stability [5], [35], [37]) The system is stable under a given control policyπ if

lim sup
t→∞

E[N(t)] < ∞,

namely, the long term expected number of messages in the system is finite. Letρ = λs denote the load
arriving into the system per unit time. For stable systems,ρ denotes the fraction of time the collector
spends receiving messages.

Definition 2 (Stability Region [37], [38], [46]) The stability regionΛ is the set of all loadsρ such
that there exists a control algorithm that stabilizes the system.

A policy is said to be throughput-optimal if it stabilizes the system for all loads strictly insideΛ.
We defineTi as the time between the arrival of messagei and its successful reception.Ti has

three components:Wd,i, the waiting time due to collector’s travel distance from the time messagei
arrives until it gets served,Ws,i, the waiting time due to the reception times of messages received
from the time messagei arrives until it gets served, ands, reception time of the message. The total
waiting time of messagei is denoted byWi = Wd,i + Ws,i, henceWi = Ti − s. We letdi be the
collector travel distance from the collector’s reception location for the message served prior to message
i to collector’s reception location for messagei. The time average per-message travel distance of the
collector, denoted byd, is defined by an expectation in the steady state given byd = limi→∞ E[di].
The time average delaysT ,W ,Wd andWs are defined similarly to haveT = Wd+Ws+s whenever
the limits exist.T ∗ is defined to be the optimal system time which is given by the policy that minimizes
T .

2.2 Stability

In this section we show thatρ < 1 is a necessary and sufficient condition for the stability of the
system. Note that this condition is also necessary and sufficient for stability of the corresponding
system without wireless transmission, as shown in [2], as well as for a G/G/1 queue [28]. Here we
prove this result using simpler techniques than [2]. The analysis in this section will be essential for
generalizing the stability condition and some delay results to the case of multiple collectors.

2.2.1 Necessary Condition for Stability

We lower bound the number of messages in the system by that in the equivalent system in which travel
times are zero (i.e.,v = ∞). This technique was used in [2] to establish a necessary stability condition
for the corresponding system without wireless transmission. Here we give a simpler proof of this fact
in Appendix A for completeness.

Theorem 1 A necessary condition for stability isρ < 1. Furthermore, we have

W ≥ λs2

2(1− ρ)
. (1)
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The proof in Appendix A first establishes that the steady state time average delay in the system under
any policyπ is at least as big as the delay of any work-conserving2 policy in the equivalent system
in which travel times are zero (i.e.,v = ∞). This is based on an induction argument that the total
number of messages in the system is always greater than that in the infinite velocity system. This is
because the service time per message is greater than that in the infinite speed system. Since the latter
system behaves as an M/D/1 queue (a queue with Poisson arrivals, constant service times and 1 server),
its average waiting time is given by the Pollaczek-Khinchin(P-K) formula for M/G/1 queues [7, p.
189], given in (1). A direct consequence of this lemma is thata necessary condition for stability in
the infinite speed system is also necessary for our system. The necessary and sufficient condition for
stability in an M/G/1 queue is given byρ < 1 (see e.g., [7] or [22]).

2.2.2 Sufficient Condition for Stability

Here we prove thatρ < 1 is a sufficient condition for stability of the system under a policy based on
Euclidean TSP with neighborhoods (TSPN). TSPN is a generalization of TSP in which the server is
to visit a neighborhood of each demand location via the shortest path [6], [17], [34]. In our case the
neighborhoods are disks of radiusr∗ around each message location. TSPN is an NP-Hard problem
such as TSP. Recently, [34] proved that a Polynomial Time Approximation Scheme (PTAS) exists for
TSPN among fat regions in the plane. A region is said to befat if it contains a disk whose size is
within a constant factor of the diameter of the region, e.g.,a disk, and a PTAS belongs to a family of
(1 + ε)-approximation algorithms parameterized byε > 0.

Under the TSPN policy, the collector performs a cyclic service of the messages present in the
system starting and ending the cycle at the center of the network region. Let timetk be the time that
the collector returns to the center for thekth time, wheret0

.
= 0. Assume the system is initially empty

at timet0. The TSPN Policy is described in detail in Algorithm 1.

Algorithm 1 TSPN Policy

1: Initially at t = t0, the collector waits at the center ofR until the first message arrival, moves to
serve this message and returns to the center.

2: If the system is empty at timetk, k = 1, 2, ..., the collector repeats the above process.
3: If there are messages waiting for service at timetk, k = 1, 2, ..., the collector computes the TSPN

tour (e.g., using the PTAS in [34]) through all the messages that are present in the system at time
tk, receives these messages in that tour and returns to the center.

Let the total number of messages waiting for service at timeti, N(ti), be the system state at time
ti. Note thatN(ti) is an irreducible Markov chain on countable state spaceN. We show the stability
of the TSPN policy through the ergodicity of this Markov chain.

Theorem 2 The system is stable under the TSPN policy for all loadsρ < 1.

Proof Given the system stateN(ti) at timeti, we apply the algorithm in [34] to find a TSPN tour
of lengthLi through theN(ti) neighborhoods that is at most(1 + ε) away from the optimal TSPN
tour lengthL∗

i . Note thatL∗
i can be upper bounded by a constantL for all N(ti). This is because the

collector does not have to move for messages within its communication range and a finite number of
such disks of radiusr∗ can cover the network region for anyr∗ > 0. The collector then can serve
the messages in each disk from its center incurring a tour of constant lengthL (an example of such
a tour is shown in Fig. 2). We will use the Foster-Lyapunov criterion to show that the Markov chain
described by the statesN(ti) is positive recurrent [5]. We useV (Ni) = sN(ti), the total load served

2 A work-conserving policy is such that the server does not idle when the queue is not empty.
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duringith cycle, as the Lyapunov function. Note thatV (0) = 0, Sk = {x : V (x) ≤ K} is a bounded
set for all finiteK andV (.) is a non-decreasing function. Since the arrival process is Poisson, the
expected number of arrivals during a cycle can be upper-bounded as follows:

E[N(ti+1)|N(ti)] ≤ λ(L/v + sN(ti)). (2)

Hence we obtain the following drift expression for the load during a cycle.

E[sN(ti+1)− sN(ti)|N(ti)] ≤ ρL/v − (1− ρ)sN(ti). (3)

Sinceρ < 1, there exist aδ > 0 such thatρ+ δ < 1:

E[sN(ti+1)− sN(ti)|N(ti)] ≤ ρL/v − δsNi

≤ −δs+
ρL

v
.1{N(ti)∈S}, (4)

where1{N∈S} is equal to1 if N ∈ S and zero otherwise andS = {N ∈ N : N ≤ K} is a bounded set
with K = d ρL

vδs + 1e. Hence the drift is negative as long asN(ti) is outside a bounded set. Therefore,
by the standard Foster-Lyapunov criterion [3], [5], the Markov chain(N(ti)) is positive recurrent
and it has a unique stationary distribution [5]. Furthermore, using (3) we can bound the steady state
averageN(ti) as [35]

lim sup
ti→∞

E[N(ti)] ≤
λL

v(1− ρ)
.

Moreover, given somet ∈ [ti, ti+1], we have

lim sup
t→∞

E[N(t)]≤ lim sup
ti→∞

E[N(ti) +N(ti+1)]

≤ 2
λL

v(1− ρ)
< ∞. (5)

This establishes the stability of the TSPN policy for any load ρ < 1. ut

This establishes thatρ < 1 is a necessary and sufficient condition for stability. The travel time
of the collector does not affect the stability region of the system. In other words, we have the same
stability region as a G/G/1 queue. The intuition behind thisresult is that as the system load is increased,
under stable policies, the fraction of time spent on travel goes to zero. This observation is also true for
the corresponding system without wireless transmission sinceρ < 1 is also necessary and sufficient
for stability of such systems [2].

The communication capability does not enlarge the stability region, however, it fundamentally
affects the delay scaling in the system. The delay scaling ofthe TSPN policy with loadρ is O( 1

1−ρ )
as shown in (5), the same delay scaling as in a G/G/1 queue. This is a fundamental improvement in
delay due to the wireless transmission capability as the delay scaling for the corresponding system
without wireless transmission isΘ( 1

(1−ρ)2 ) [8]. This delay scaling can be easily obtained as follows.
The system without wireless transmission corresponds to having r∗ = 0 in our system. In this case,
one utilizes a(1 + ε) PTAS for the optimal TSP tour through the message locations instead of the
TSPN tour. An upper bound on the TSP tour for anyN(ti) points arbitrarily distributed in a square of
areaA is given by

√

2AN(ti) + 1.75
√
A [29]. Similar arguments as in the proof of Theorem 2 leads

to the drift condition

E[sN(ti+1)− sN(ti)|N(ti)] ≤ ρ(κ1

√

AN(ti) + κ2)− (1− ρ)sN(ti), (6)

for some constantsκ1 andκ2, where the drift is again negative as long asN(ti) is outside a bounded
setS. The difference in this case is that the travel time per cyclescales with the number of messages
N(ti) as

√

N(ti) and using (6) we can show that the delay scaling with the loadρ is O( 1
(1−ρ)2 ).
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2.3 Lower Bound On Delay

For wireless networks with a small area and/or very good channel quality such thatr∗ ≥
√

A/2,
the collector does not need to move as every message will be inits reception range if it just stays
at the center of the network region. In that case the system can be modeled as an M/D/1 queue with
service times and the associated queuing delay is given by the P-K formula for M/G/1 queues, i.e.,
W = λs2/(2(1 − ρ)). However, whenr∗ <

√

A/2, the collector has to move in order to receive
some of the messages. In this case the reception times is still a constant, however, the travel time per
message is now a random variable which is not independent over messages (for example, observing
small travel times for the previous messages implies a densenetwork, and hence the future travel times
per message are also expected to be small). Next we provide a lower bound similar to a lower bound
in [8] with the added complexity of communication capability in our system.

Theorem 3 The optimal steady state time average delayT ∗ is lower bounded by

T ∗ ≥ E[(||U || − r∗)+]

v(1 − ρ)
+

λs2

2(1− ρ)
+ s. (7)

where(||U ||− r∗)+ representsmax(0, ||U ||− r∗), U is a uniformly distributed random variable over
the network regionR, andρ = λs is the system load.

Note that theE[(||U || − r∗)+] term can be further lower bounded byE[||U ||]− r∗, whereE[||U ||] =
0.383

√
A [8].

Proof As outlined in Section 2.1, the delay of messagei, Ti has three components:Ti = Wd,i +
Ws,i + si. Taking expectations and the limit asi → ∞ yields

T = Wd +Ws + s. (8)

A lower bound onWd is found as follows: Note thatWd,i.v is the averagedistancethe collector
moves during the waiting time of messagei. This distance is at least as large as the average distance
between the location of messagei and the collector’s location at the time of messagei’s arrival less the
reception distancer∗. The location of an arrival is determined according to the uniform distribution
over the network region, while the collector’s location distribution is in general unknown as it depends
on the collector’s policy. We can lower boundWd by characterizing the expected distance between a
uniform arrival and the best a priori location in the networkthat minimizes the expected distance to a
uniform arrival. Namely we are after the locationν that minimizesE[||U−ν||] whereU is a uniformly
distributed random variable. The locationν that solves this optimization is called themedianof the
region and in our case the median is the center of the square shaped network region. Because the travel
distance is nonnegative, we obtain the following bound onWd:

Wd ≥ E[(||U || − r∗)+]

v
. (9)

LetN be the average number of messages received in a waiting time and letR be the average residual
reception (service) time. Due to the PASTA property of Poisson arrivals (Poisson Arrivals See Time
Averages) (see for example [7, p. 171]) a given arrival in steady state observes the time average steady
state occupancy distribution. Therefore, the average residual time observed by an arrival is alsoR and
is given byλs2/2 [7, p. 188] and we have

Ws = sN +R. (10)

Since in a stable system in steady state the average number ofmessages received in a waiting time is
equal to the average number of arrivals in a waiting time (a variation of Little’s law [8], [49]) we have
N = λW = λ(Wd +Ws). Substituting this in (10) we obtain

Ws = sλ(Wd +Ws) +
λs2

2
.
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This implies

Ws =
ρ

1− ρ
Wd +

λs2

2(1− ρ)
, (11)

Substituting (9) and (11) in (8) yields (7). ut
In addition to the average waiting time of a classical M/G/1 queue given in (1), the queueing delay
also increases due to the collector’s travel.

2.4 Collector Policies

We derive upper bounds on delay by analyzing policies for thecollector. The TSPN policy analyzed
in the previous section is stable for all loadsρ < 1 and hasO( 1

1−ρ ) delay scaling. Since the lower

bound in Section 2.3 also scales with the load as1
1−ρ , the TSPN policy has optimal delay scaling. In

the following we consider the First Come First Serve (FCFS) and the Partitioning policies that can
have better delay properties than the TSPN policy. In particular, the FCFS policy is delay-optimal at
light loads and the Partitioning policy has delay performance that is very close to the lower bound
when the travel and reception times are comparable.

2.4.1 First Come First Serve (FCFS) Policy

A straightforward policy is the FCFS policy where the messages are served in the order of their arrival
times. A version of the FCFS policy, call FCFS’, where the receiver has to return to the center of the
network region (the median of the region for general networkregions) after each message reception
was shown to be optimal at light loads for the DTRP problem [8]. This is because the center of the
network region is the location that minimizes the expected distance to a uniformly distributed arrival.
Since in our system we can do at least as good as the DTRP by setting r∗ = 0, FCFS’ is optimal also
for our system at light loads. Furthermore, the FCFS policy is not stable for all loadsρ < 1, namely,
there exists a valuêρ such that the system is unstable under FCFS policy for allρ > ρ̂. This is because
under the FCFS policy the average travel component of the service time is fixed, which makes the
average arrival rate greater than the average service rate as ρ → 1. Therefore, it is better for a policy
to serve more messages in the same “neighborhood” in order toreduce the amount of time spent on
mobility.

2.4.2 Partitioning Policy

Next we propose a policy based on partitioning the network region into subregions and the collector
performing a cyclic service of the subregions. This policy is an adaptation of the Partitioning policy
of [8] to the case of a system with wireless transmission. We explicitly derive the delay expression for
this policy and show that it scales with the load asO( 1

1−ρ) as in the TSPN policy.

We divide the network region into(
√
2r∗ x

√
2r∗) squares as shown in Fig. 2. This choice ensures

us that every location in the square is within the communication distancer∗ of the center of the square.
The number of subregions in such a partitioning is given by3 ns = A/(2(r∗)2). The partitioning in
Fig. 2 represents the case ofns = 16 subregions. The collector services the subregions in a cyclic
order as displayed in Fig. 2 by receiving the messages in eachsubregion from its center using an
FCFS order. The messages within each subregion are served exhaustively, i.e., all the messages in a
subregion are received before moving to the next subregion.The collector then receives the messages
in the next subregion exhaustively using FCFS order and repeats this process. The distance traveled

3 Note that such a partitioning requires
√
ns =

√

A/(2(r∗)2) to be an integer. This may not hold for a given areaA and
a particular choice ofr∗. In that case one can partition the region using the largest reception distancer∗ < r∗ such that this
integer condition is satisfied.
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r∗

√
2r∗

Fig. 2: The partitioning of the network region into square subregions of side
√
2r∗. The circle with

radiusr∗ represents the communication range and the dashed lines represent the collector’s path.

by the collector between each subregion is a constant equal to
√
2r∗. It is easy to verify that the

Partitioning policy behaves as a multiuser M/G/1 system with reservations (see [7, p. 198]) where
thens subregions correspond to users and the travel time between the subregions corresponds to the
reservation interval. Using the delay expression for multiuser M/G/1 queue with reservations in [7, p.
200] we obtain,

Tpart =
λs2

2(1− ρ)
+

ns − ρ

2v(1− ρ)

√
2r∗ + s, (12)

whereρ = λs is the system load. Combining this result with (7) and notingthat the above expression
is finite for all loadsρ < 1, we have established the following observation.

Observation 1 The time average delay in the system scales asΘ( 1
1−ρ) with the loadρ and the Parti-

tioning policy is stable for allρ < 1.

Despite the travel component of the service time, we can achieveΘ( 1
1−ρ ) delay as in classical

queuing systems (e.q., G/G/1 queue). This is the fundamental difference between this system and
the corresponding system where wireless transmission is not used, as in the latter system the delay
scaling with load isΘ( 1

(1−ρ)2 ) [8]. This difference can be explained intuitively as follows. Denote by
N the average number of departures in a waiting time. It is easyto see from the P-K formula that
in a classical M/G/1 queue,N scales with the load asΘ( 1

1−ρ). We argue that this scaling forN is
preserved in our system but not in [8]. TheWs expression as a function ofWd in (11) implies that for
any given policy with its correspondingWd, N can be lower bounded byλWd

1−ρ . For the system in [8],

the minimum per-message distance the collector moves in thehigh load regime scales asΩ(
√
A√
N
)

[8]. Intuitively, this is due to the observation that the nearest neighbor distance amongN uniformly
distributed points on a square region of areaA scales as

√
A√
N

. Therefore, for this system we have

Wd ≈ NΩ(
√
A√
N
) ≈ Ω(

√
NA) which givesN ≈ Ω( λ2A

(1−ρ)2 ). Namely,Wd increases with the load

and this results in an extra1/(1 − ρ) scaling in delay in addition to the1/(1 − ρ) factor of classical
G/G/1 queues. However, with the wireless reception capability, the collector does not need to move
for messages that are inside a disk of radiusr∗ around it. Since a finite (constant) number of such disks
cover the network region,Wd can be upper bounded by a constant independent of the system load,
for example, for the Partitioning policy an easy upper boundon Wd is the length of one cyclic tour
around the network. Therefore, in our systemN scales as1/(1− ρ) as in classical queueing systems.

It is interesting to note that [15] considered the case wheremessages were transmitted to the
collector according to a random access scheme, i.e., transmissions occur with probabilityp in each
time slot. There the delay scaling ofΩ( 1

(1−ρ)2 ) with loadρ was obtained as in the system without
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Fig. 3: Delay lower bound vs. network load using different communication ranges forA = 200,
β = 2, α = 4, v = 1 ands = 1.

wireless transmission. The reason for this is that in order to have successful transmissions under the
random access interference of neighboring nodes, the reception distance should be of the same order
as the nearest neighbor distances [15], [23].

2.4.3 Numerical Results-Single Collector

Here we present numerical results corresponding to the analysis in the previous sections. We lower
bound the delay expression in (7) usingE[(||U || − r∗)+] ≥ E[||U ||] − r∗, where[||U ||] = 0.383

√
A

is the expected distance of a uniform arrival to the center ofsquare region of areaA [8]. Fig. 3 shows
the delay lower bound as a function of the network load for increased values of the communication
ranger∗ 4. As the communication range increases, the message delay decreases as expected. For
heavy loads, the delay in the system is significantly less than the delay in the corresponding system
without wireless transmission in [8], demonstrating the difference in the delay scaling between the
two systems. For light loads and small communication ranges, the delay performance of the wireless
network tends to the delay performance of [8].

Fig. 4 compares the delay in the Partitioning Policy to the delay lower bound for two different
cases. When the travel time dominates the reception time, the delay in the Partitioning policy is about
10.6 times the delay lower bound. For a more balanced case, i.e., when the reception time is compa-
rable to the travel time, the delay ratio drops to2.4.

3 Multiple collectors - Interference-Free Networks

In this section we extend our analysis to a wireless network with multiple identical collectors that
do not interfere with each other. An arriving message is transmitted when one of them collectors
comes within the reception distance of the message locationand grants access for the message’s
transmission. Therefore, at a given time there can be at mostm transmissions in the network. We
consider policies that partition the network region intom subregions. Each collector is assigned to one
of the subregions and is allowed to operate only in its own subregion. We call this class of policies the
network partitioning policies. In such a case, there is no interference from nodes within the subregion

4 For the delay plot of the no-communication system, the pointthat is not smooth arises since the plot is the maximum of
two delay lower bounds proposed in [8].
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Fig. 4: Delay in the Partitioning policy vs the delay lower bound for r∗ = 2.2, β = 2 andα = 4.
Case-1: Dominant travel time (A = 800, v = 1, s = 2). Case-2: Comparable travel and reception
times (A = 60, v = 10, s = 2).

where the transmission is taking place. The only source of interference can be due to transmissions in
other subregions.

The interference-free assumption holds for example if the signaling schemes used in different sub-
regions are orthogonal to each other. This can be achieved for example by having different frequency
bands for transmissions in different subregions. Furthermore, for networks deployed on a large area,
even if orthogonal signaling is not utilized, the interference between subregions can be negligible due
to signal attenuation with distance.

Note that the interference-free assumption is consistent for the purposes of a lower bound on delay
since the interference from neighboring nodes can only increase the message reception time. Similar
to the previous section, we assume acommunication ranger∗ for each collector and each reception
takes times.

3.1 Stability

Here we show thatρ = λs/m < 1 is a necessary and sufficient condition for stability of the system.

3.1.1 Necessary Condition for Stability

A necessary condition for stability of the multi-collectorsystem is given byρ = λs/m < 1. We
prove this by showing that the system stochastically dominates the corresponding system with zero
travel times (i.e., an M/D/m queue, a queue with Poisson arrivals, constant service time andm servers)
similar to Section 2.2.

Theorem 4 A necessary condition for the stability of any policy isρ = λs/m < 1. Furthermore, the
optimal steady state time average delayT ∗

m is lower bounded by

T ∗
m ≥ λs2

2m2(1− ρ)
− m− 1

m

s2

2s
+ s, (13)

whereρ = λs/m is the system load.
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The proof is similar to the proof of Theorem 1 and is given in Appendix-B. It makes use of the fact
that the steady state time average delay in the system is at least as big as the delay in the equivalent
system in which travel times are considered to be zero (i.e.,v = ∞).

3.1.2 Sufficient Condition for Stability

Next we establish thatρ < 1 is also sufficient for stability. This can be seen by dividingthe network
region intom identical square subregions, and performing a single-collector TSPN policy in each sub-
region5. Since the arrival process is Poisson, each subregion receives an independent Poisson arrival
process of intensityλ/m. Furthermore, each collector performs a TSPN policy independently of the
other collectors. Therefore, using the stability result ofthe single-collector TSPN policy, the systems
in each subregion are stable ifρ < 1. We state this fact in the following theorem:

Theorem 5 The system is stable under the multi-collector TSPN policy for all loadsρ = λs/m < 1.

Note that a similar delay analysis to the single-collector TSPN case shows that the multi-collector
TSPN policy hasO( 1

1−ρ ) delay scaling with the loadρ.

3.2 Delay Lower Bound

The delay lower bound in (13) neglects the travel component of the delay. Therefore, we provide
another lower bound for the optimal delayT ∗

m and take their simple average. The following theorem
states the second lower bound on delay. It is based on the convexity argument that when the travel
component of the waiting time is lower bounded by a constant,the equal area partitioning of the
network region minimizes the resulting delay expression over all area partitionings.

Theorem 6 For the class of network partitioning policies, the optimalsteady state time average delay
T ∗
m is lower bounded by

T ∗
m ≥

max
(

0, 23

√

A
mπ − r∗

)

v(1− ρ)
+ s, (14)

whereρ = λs/m is the system load.

Proof Here we use an approach similar to the proof of Theorem 3. We divide the average delayT into
three components:

T = Wd +Ws + s. (15)

The lemma below provides a bound forWd, the average message waiting time due to the collectors’s
travel, using a result from [25] for them-median problem.

Lemma 1

Wd ≥
max

(

0, 23

√

A
mπ − r∗

)

v
. (16)

Proof Let Ω beanyset of points in< with |Ω| = m. LetU be a uniformly distributed location in<
independent ofΩ and defineZ∗ , minν∈Ω ‖ U − ν ‖. Let the random variableY be the distance
from the center of a disk of areaA/m to a uniformly distributed point within the disk. Then it is shown
in [25] that

E[f(Z∗)] ≥ E[f(Y )] (17)

5 For simplicity we assume that it is possible to divide the region intom identical square subregions.
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for any nondecreasing functionf(.). Using this result we obtainE[max(0, Z∗−r∗)] ≥ E[max(0, Y −
r∗)]. Note thatWd can be lower bounded by the expected distance of a uniform arrival to the closest
collector at the time of arrival lessr∗. Because the travel distance is nonnegative, we have

Wd ≥ E[max(0, Y − r∗)]/v ≥ max(0,E[Y ]− r∗)/v,

where the second bound is due to Jensen’s inequality. Substituting E[Y ] = 2
3

√

A
mπ into the above

expression completes the proof. ut

Intuitively the best a priori placement ofm points in< in order to minimize the distance of a uniformly
distributed point in the region to the closest of these points is to cover the region withm disjoint disks
of areaA/m and place the points at the centers of the disks. Such a partitioning of the region is not
possible, however, using this idea we can lower bound the expected distance as in (16).

We now derive a lower bound onWs. LetR1, R2, ..., Rm be the network partitioning with areas
A1, A2, ..., Am respectively (

∑m
j=1 A

j = A). Consider the message receptions in steady state that are
received by collectorj eventually. Letλj be the fraction of the arrival rate served by collectorj. Due
to the uniform distribution of the message locations we have

λj

λ
=

Aj

A
.

Let N j be the average number of message receptions for which the messages that are served by
collectorj waits in steady state. Similarly letW j

s andW j
d be the average waiting times for messages

served by collectorj due to the time spent on message receptions and collectorj’s travel respectively.
Using (10) and lower bounding the residual time by zero we have

W j
s ≥ sN j .

Using Little’s law (N j = λj(W j
s +W j

d )) in a similar way as for (11) we have

W j
s ≥ λjs

1− λjs
W j

d . (18)

The fraction of messages served by collectorj isAj/A. Therefore, we can writeWs as

Ws =

m
∑

j=1

Aj

A
W j

s ≥
m
∑

j=1

Aj

A

λjs

1− λjs
W j

d . (19)

For a given regionRj with areaAj , W j
d is lower bounded by (similar to the derivation of (9)) the

distance of a uniform arrival to the median of the region lessr∗.

W j
d ≥ E[max(0, ||U − ν|| − r∗)]

v
≥ max(0,E[||U − ν||]− r∗)

v
, (20)

whereν is the median ofRj and||U − ν|| is the distance ofU , a uniformly distributed location inside
Rj , to ν. The inequality in (20) is due to Jensen’s inequality for convex functions. A disk shaped
region yields the minimum expected distance of a uniform arrival to the median of the region [25].
Using this we further lower boundWd by noting that for a disk shaped region of areaAj , E[||U − ν||]
is just the expected distance of a uniform arrival to the center of the disk given by23

√

Aj

π . Hence

W j
d ≥

max(0, 2
3

√

Aj

π − r∗)

v
=

max(0, c1
√
Aj − r∗)

v
, (21)
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wherec1 = 2
3
√
π
= 0.376. Lettingf(Aj) =

λAj

A
s

1−λAj

A
s
, which is a convex and increasing function of

Aj , we rewrite (19) as

Ws ≥
m
∑

j=1

f(Aj)

vA
Ajmax(0, c1

√
Aj − r∗). (22)

Next we show that the functionf(Aj)Ajmax(0, c1
√
Aj − r∗) is a convex function ofAj via the two

lemmas below.

Lemma 2 Let f(.) andg(.) be two convex and increasing functions. The functionh(.) = f(.)g(.) is
also convex and increasing.

Proof See Appendix C. ut

Lemma 3 h(x) = xmax(0, c1
√
x − c2) with domain[0,∞) is a convex and increasing function of

x.

Proof See Appendix D. ut

Letting g(Aj)
.
= f(Aj)Ajmax(0, c1

√
Aj − r∗), we have from the lemmas 2 and 3 that the function

g(Aj) is convex. Now rewriting (22) we have

Ws ≥ (
m

vA
)
1

m

m
∑

j=1

g(Aj).

Using the convexity of the functiong(Aj) we have

Ws ≥ (
m

vA
)g
(

∑m
j=1 A

j

m

)

=
m

vA
g(

A

m
)

=
λs
m

1− λs
m

max(0, c1
√

A
m − r∗)

v

=
ρ

1− ρ

max
(

0, c1

√

A
m − r∗

)

v
. (23)

The above analysis essentially implies that theWs expression in (22) is minimized by theequitable
partitioningof the network region. Finally combining (15), (16) and (23)we obtain (14). ut

Finally, taking the simple average of (13) and (14) we arriveat the following theorem.

Theorem 7 For the class of network partitioning policies, the optimalsteady state time average delay
T ∗
m is lower bounded by

T ∗
m ≥ λs2

4m2(1−ρ)
+

max
(

0, 23

√

A
mπ−r∗

)

2v(1−ρ)
−m−1

m

s2

4s
+ s, (24)

whereρ = λs/m is the system load.

This expression incorporates both the travel time and the message reception time components of the
expected delay in the system. Theorem 7 is valid for the classof network partitioning policies. For the
system without wireless transmission, it has been shown that partitioning the region intom equal size
disjoint subregions (one for each collector) preserves optimality in the high load limit [9], [51]. We
conjecture that this optimality is also preserved in our system.
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r∗

√
2r∗

Fig. 5: The partitioning of the network region into square subregions of side
√
2r∗ for the case of

multiple collectors in the network. The circle with radiusr∗ represents the communication range and
the dashed lines represent one of the collector’s path.

3.3 Multiple Collector Policies

It is easy to show that a generalization of the FCFS policy in which we partition the network region
into m subregions and assign each collector to perform the single-collector FCFS Policy in its own
subregion has optimal delay at light loads. The reason for this results is similar to the light load
optimality of the FCFS Policy for the single collector case.The area partitioning has to be done as
follows: We createm Voronoi regions with centers of the regions given by them-median locations6

of the network region. This policy is not stable asρ → 1 due to the same reason as in Section 2.4.

3.3.1 Generalized Partitioning Policy

Next we propose a policy based on dividing the network regioninto m equal size subregions. For
simplicity we assume that it is possible to divide the regioninto m identical square subregions. Each
collector is assigned to one of the subregions and is responsible for receiving messages that arrive into
its own subregion using the single collector partitioning policy analyzed in Section 2.4.2. Namely,
first the network region is divided into subregions of areaA/m and then each subregion is divided
into

√
2r∗ x

√
2r∗ squares. The number of

√
2r∗ x

√
2r∗ squares in each subregion is given by7 ns =

A/m
2(r∗)2 . Fig. 5 represents such a partitioning for the case of four collectors in the network withns = 16

squares in each subregion. Since each subregion behaves identically, the average delay of this policy
is the average delay of the single collector Partitioning policy applied to a subregion with arrival rate
λ/m, areaA/m, andns =

A/m
2(r∗)2 :

Tpart =
λs2

2m(1− ρ)
+

A
2m(r∗)2 − ρ

2v(1− ρ)

√
2r∗ + s, (25)

whereρ = λs/m is the system load. This result, when combined with (13), establishes that for the
case of multiple collectors in the system the delay scaling with the load isΘ( 1

1−ρ). This is again a

6 The set ofm-median locations for a region is the set of the bestm a priori locations in the region that minimizes the
expected distance to a uniform arrival.

7 As for the single collector Partitioning policy, we note that if
√
ns =

√

(A/m)/(2(r∗)2) is not an integer, one can
partition the region using the largest reception distancer∗ < r∗ such that this integer condition is satisfied.
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Fig. 6: Delay lower bound vs. network load for m=2 collectors, r∗ = 4.7, A = 400, β = 2, α = 4,
v = 1 ands = 1.
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Fig. 7: Delay of the Partitioning policy vs the delay lower bound form = 4 collectors,r∗ = 2.6,
A = 500, β = 2, α = 4, v = 1 ands = 2.

fundamental improvement compared to theΘ( 1
(1−ρ)2 ) delay scaling in the system without wireless

transmission and with multiple collectors in [9].

3.3.2 Numerical Results

We compare the delay lower bound in (24) to the delay lower bound in the corresponding system
without wireless transmission in [9] for the case of two collectors in Fig. 6. The delay in the two-
collector system is significantly below the delay in the system without wireless transmission and this
difference is more pronounced for high loads. Fig. 7 displays the delay lower bound in (24) and the
delay of the Partitioning policy in (25) as functions of the network loadρ. The delay of the Partitioning
policy is about7 times the delay lower bound.
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4 Multiple Collectors - Systems with Interference Constraints

In this section we consider systems in which simultaneous transmissions to different collectors in-
terfere with each other. Interference between simultaneous transmissions occurs if the collectors do
not use orthogonal signaling. At each point in time, the problem is to dynamically determinemessage
pick up locationsfor the collectors and also to efficiently route the collectors to these pick up locations
based on the current collector configuration and the number of messages present in different parts of
the network region. The objective is to minimize the expected message waiting time in the system.
This is a joint scheduling and euclidian vehicle routing problem which has not been considered previ-
ously.

Here we obtain preliminary results for this problem by emphasizing the scheduling aspects of
the problem through fairly general interference constraints and simplifying the mobility aspect of the
problem by discretizing the collectors’ motion. We characterize the stability region of the system in
terms of interference constraints. We show that a frame-based version of the Max-Weight scheduling
policy [11], [46], can stabilize the system whenever it is stabilizable and we derive an upper bound on
the average delay under this policy.

First we explain the model in more details. Similar to the previous section, considerm collectors
in a square regionR of areaA receiving data messages that arrive in time according to a Poisson
process of intensityλ. Upon arrival the messages are distributed independently and uniformly inR
and an arriving message is transmitted when a collector comes within thereception distance, r∗, of
the message location and grants access for the message’s transmission. We assume that time is slotted,
t = 0, 1, 2, ..., where the slot length is equal to one message transmission time s. We consider a
partitioning of the network region into a gridG of

(

r∗√
2
x r∗√

2

)

squares, i.e.,K
.
= A

(r∗)2/2 square cells of

diameterr∗ as shown in Fig. 88. The collectors are confined to move on the gridG and simultaneous
transmissions to different collectors are subject to interference constraints defined below.

Definition 3 (Cell Interference Model) Given a collector that is at the intersection of (at most) 4
adjacent cells, a transmission to the collector from one of the cells is successfully received if there is
no other transmission within the other cells adjacent to thecollector.

The Cell Interference Model essentially creates anexclusion regionof 4 cells around a collector re-
ceiving a message. Similar interference models have been considered in literature. For example, the
Protocol Model considered in [24], [43] assumes successfultransmission if a disk region around the
receiver has no other transmission. Similarly, the Vulnerability Circle Model considered in [16] or the
Disk Reception Model considered in [15] require an exclusion region around receivers for successful
reception.

The Cell Interference Model essentially createsK cells which can be treated as “users” in a multi-
user queue withm servers. Assume a fixed ordering of these subregions. Due to the splitting property
of the Poisson process, each celli = 1, 2, ...,K, receives Poisson arrivals with rateλi

.
= λ/K.

Let Ai(t) denote the number of messages that arrive into celli in time slot t. The expectedload
entering celli per time slot is given byρi = λis. Furthermore, letNi(t) be the number of messages
present in celli at the beginning of time slott. We haveN(t)

.
= [N1(t), ..., NK(t)] andN(t) =

N1(t) + ... + NK(t), whereN(t) is the total number of messages in the system at the beginningof
time slott. We assume that the system is initially empty, thereforeN(0) = 0.

Next we characterize the interference constraints of the system in terms ofactivation vectors. We
call a cellactiveif at least 1 message in the cell is scheduled for transmission, and we assume that each
cell k = 1, 2, ...,K is associated with exactly one pick up location on the gridG. For instance, the
pick up location for each cell could be the upper left corner of the cell as shown in Fig. 8. Therefore,
specifying the set of cells to activate also specifies the locations of the collectors. A feasible activation

8 Similar to the previous sections, ifK = A
(r∗)2/2

is not an integer, one can partition the region using the largest reception

distancer∗ < r∗ such that this integer condition is satisfied.
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Fig. 8: The network model. Red regions are the exclusion zones for the servers currently in service. 2
Servers are forced to be inactive since the queue in their vicinity are in the exclusion zone of another
server.

vectorI ∈ I is the one under which the transmissions from the set of active cells do not interfere with
each other, whereI is the set of all feasible activation vectors. If cellk, k = 1, ...,K, is active under
activation vectorI, then we haveI(k) = 1, otherwiseI(k) = 0. The setI consists ofK-dimensional
vectors of at mostm nonzero entries. Furthermore, because transmissions require an exclusion zone
of up to 4 adjacent cells, the number of nonzero entries of vectors inI is typically less thanm. Note
that we include the zero vectorI = 0 in I for convenience.

An alternative way of modeling the interference constraints is to have a4 by K matrix for each
activationI. In this representation every column of the matrixI corresponds to a single cell and the
different rows in a column vector specifies the position of the collector responsible for serving the cell.
Therefore, for a given matrixI, at most one element of a column vector can be nonzero. The matrix
activation model is more complex, however, it does not require the extra assumption that each cell is
associated with a single pick up location. Here we present our results in terms of the simpler vector
activation model for ease of exposition.

LetTr denote the number of time slots required for a collector to move from the lower right corner
of the gridG to the upper left corner ofG. We callTr thereconfiguration timeof the network. Consider
the corresponding system with infinite speed, i.e.,Tr = 0. This system is essentially a parallel queuing
system with with multiple servers and interference constraints, which is a special case of the system
considered in [38] or [46]. WhenTr = 0, the stability region of this system,Λ0, consists of the
closure of all load vectorsρ = [ρ1, ρ2, ..., ρK ]′ = s[λ1, λ2, ..., λK ]′ in the convex hull of the vectors
in I [12], [37], i.e.,

Λ
0 = {ρ|ρ ∈ Conv{I}}. (26)

The celebrated Max-Weight scheduling algorithm was introduced in [46] and was shown to be
throughput optimal for the system with zero reconfigurationtime. Specifically, the Max-Weight policy
activates the set of users inI∗(t) where

I
∗(t) = argmax

I∈I
N(t).I. (27)

WhenTr > 0, we lose service opportunities during the reconfiguration times. Therefore, the stability
region of our system can be no larger thanΛ

0:

Lemma 4 An outer bound on the stability region is given by

Λ ⊆ Λ
0.
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The analysis in the next section shows that we haveΛ = Λ
0. The intuition behind this is that, under

throughput-optimal policies, as the load approaches the boundary of the stability region, the fraction
of time spent to reconfiguration tends to zero.

4.1 Framed-Max-Weight Policy

For systems with nonzero reconfiguration times, the Max-Weight policy is not throughput-optimal
[11], [12]. The intuitive reason behind this is that the Max-Weight policy gives decisions to change
the schedule too frequently, resulting in throughput-lossduring the reconfiguration intervals. A frame
based version of the Max-Weight policy where the same schedule is used throughout the frame incurs
less throughput loss during the reconfiguration intervals.Indeed, single hop optical networks with in-
terference constraints and nonzero reconfiguration times were considered in [11], where a frame-based
version of the Max-Weight policy was shown to be throughput-optimal asymptotically in the frame
length. Fluid limit of the system was considered in [11] and throughput-optimality was established un-
der rate stability9. Furthermore, anNxN switch with matching constraints and reconfiguration delays
was considered in [12], where a policy based on servicing batches of arrivals over frames accord-
ing to the Max-Weight activation vector was shown to be throughput optimal asymptotically in the
frame length. In fact, we show that the frame-based Max-Weight (FMW) policy proposed in [11] is
throughput-optimal asymptotically in the frame length also for the system considered in this section.
Different from the analysis in [11] and [12], we prove this result using classical quadratic Lyapunov
drift techniques. The reason that the FMW policy stabilizesthe system is that as the system load
approaches the boundary of the stability region, the policyemploys good schedules, i.e., maximum-
weight schedules, over longer frame lengths, effectively decreasing the fraction of throughput lost to
reconfiguration to zero.

Under the FMW policy the time is divided into intervals of lengthT slots. The FMW policy picks
the activation vector corresponding to the Max-Weight configuration at the beginning of each frame.
Then it idles the system forTr slots to ensure that all the servers travel to their assignedlocations.
Then the policy applies this activation vector forT − Tr slots. The choice of the frame lengthT
depends on the loadρ. Specifically, the policy requiresT > Tr/ε whereε is determined by solving
the Linear Program below [11].

ε(ρ) , max

(

1−
∑

I∈I
αI

)

subject to ρi = λis ≤
∑

I∈I
αII(i), i ∈ {1, ...,K}

∑

I∈I
αI ≤ 1

αI ≥ 0, ∀I ∈ I. (28)

Note thatε is a measure of distance of the load vector to the boundary of the stability region [11]. The
FMW policy is described in Algorithm 2 in detail.

Theorem 8 For anyρ = [ρ1, ..., ρK ]′ strictly insideΛ0, the FMW policy stabilizes the system as long
asT > Tr

ε .

The proof is in Appendix E. A similar result is proved in [12] for the fluid limit of this system establish-
ing the rate stability. The proof in Appendix E is based on a quadratic Lyapunov drift argument over

9 A queue of lengthNi(t) at timet is rate stable iflimt→∞ Ni(t)/t = 0. This is a weaker notion of stability as compared
to the stability definition in 1 which implies bounded first moments of a stationary measure.
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Algorithm 2 Framed-Max-Weight Policy

1: Find the Max-Weight configuration for the servers based on the queue lengths at the beginning of
the frame: Assuming the system is at thekth frame, find

I
∗(t) = argmax

I∈I
N(kT ).I. (29)

2: Let the users be idle forTr slots and reconfigure the collectors to their new locations.
3: Apply the activation vectorI∗ for T − Tr slots whereT > Tr

ε .

a sufficiently long frame of durationT . Let tk be the first slot of thekth frame. The proof establishes
that theT -step expected drift of the queue lengths satisfies

E
[

L(N(tk + T ))− L(N(tk))
∣

∣N(tk)
]

≤ KBT 2 − 2T

K
(ε − Tr

T
)
∑

i

Ni(tk), (30)

whereB = 1 + λs
K + λ2s2

K2 is a constant. This means that the queue sizes tend to decrease if they
are outside a bounded set for a sufficiently large frame length which implies bounded expected queue
sizes [37].

The following corollary follows from Theorem 8 and Lemma 4.

Corollary 1 We have
Λ = Λ0.

Note that the overall arrival rateλ is given byλ = λ1 + ... + λK whereλk = λ/K for k =
1, ...,K. Therefore, the necessary and sufficient stability condition onρ = λs is ρ < ρ̂ whereρ̂ is the
intersection of theK-dimensional regionΛ with the lineρ1 = ... = ρK = ρ/K.

4.2 Delay Analysis

In this section we derive an upper bound on the expected number of messages in the system. Note
that through Little’s law, the expected delay in the system is proportional to the expected number of
messages in the system. Taking the expectation of (30) over the distribution ofN(kT ) we have

E [L(N(tk + T ))]− E [L(N(tk))] ≤ KBT 2 − 2T

K
(ε− Tr

T
)
∑

i

E [Ni(tk)] .

We write a similar drift expression fork = 0, 1, ...,M − 1, and sum overk to obtain a telescoping
series that gives

E [L(N(tM ))]− E [L(N(0))] ≤ MKBT 2 − 2T

K
(ε− Tr

T
)

M−1
∑

k=0

∑

i

E [Ni(tk)] ,

wheretk+1 = tk + T , k = 0, 1, .... Dividing byM and usingL(N(tM )) ≥ 0 andL(N(0)) = 0 we
have

1

M

(

2T

K
(ε − Tr

T
)

M−1
∑

k=0

∑

i

E [Ni(tk)]

)

≤ KBT 2.

Taking thelim sup asM → ∞ we have

lim sup
M→∞

1

M

M−1
∑

k=0

∑

i

E [Ni(tk)] ≤
K2TB

2(ε− Tr/T )
.
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Noting that
∑

i Ni(t) = N(t) that is the total number of messages in the system at time slott we have

lim sup
M→∞

1

M

M−1
∑

k=0

E [N(tk)] ≤
K2TB

2(ε− Tr/T )
. (31)

Now for any givent ∈ {tk, tk+1 − 1} we have

N(t) ≤ N(tk) +
T−1
∑

τ=0

∑

i

Ai(tk + τ).

Summing over the time slots within thekth frame and taking conditional expectation we have for any
t ∈ {tk, tk+1 − 1}

T−1
∑

τ=0

E [N(tk + τ)|N(tk)] ≤ TN(tk) + T 2
∑

i

λis,

where we used the fact that arrival processes are i.i.d. and independent of the queue lengths. Using
λ =

∑

i λi, taking expectation with respect toN(tk), writing similar expressions forM frames and
summing them we obtain

1

MT

MT−1
∑

t=0

E [N(t)] ≤ 1

M

M−1
∑

k=0

E [N(tk)] + Tρ.

Finally, taking thelim sup asM → ∞ and using (31) we have

lim sup
t→∞

1

t

t−1
∑

τ=0

E [N(t)] ≤ K2TB

2(ε− Tr/T )
+ Tρ,

Using this expression it can be shown that [37]

lim sup
t→∞

E [N(t)] ≤ K2TB

2(ε− Tr/T )
+ Tρ.

For large frame lengths such thatT >> Tr, the delay scaling is approximately proportional to1/ε,
whereε is a measure of the distance of arrival rate to the boundary ofthe stability region. Note that
when the reconfiguration interval is large, large frame lengthsT >> Tr may be required for achieving
throughput-optimality, which, on the other hand, increases the expected delay as the delay under the
FMW policy is proportional to the frame length.

5 CONCLUSION

In this paper we considered the use of dynamic vehicle routing in order to improve the throughput
and delay performance of wireless networks where messages arriving randomly in time and space
are gathered by mobile collectors via wireless communications. For the case of a single collector,
we characterized the stability region of this system to be all system loadsρ < 1. We developed
fundamental lower bounds on time average expected delay andderived upper bounds on delay by
analyzing TSPN and Partitioning policies. For the case of multiple collectors whose communications
do not interfere with each other, we extended the stability and delay scaling results of the single
collector case. Our results show that combining controlledmobility and wireless transmission results
in Θ( 1

1−ρ ) delay scaling with loadρ. This is the fundamental difference between our system and the
system without wireless transmission (DTRP) analyzed in [8] and [9] where the delay scaling with the
load isΘ( 1

(1−ρ)2 ). Finally, for the the case where simultaneous transmissions to different collectors
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interfere with each other we formulate a scheduling problemand characterize the stability region of
the system in terms of interference constraints. We show that a frame-based version of the Max-Weight
policy is throughput-optimal asymptotically in the frame length and derive an upper bound on average
delay under this policy.

This work is a first attempt towards utilizing a combination of controlled mobility and wireless
transmission for data collection in stochastic and dynamicwireless networks. Therefore, there are
many related open problems. In this paper we have utilized a simple wireless communication model
based on a communication range. In the future we intend to study more advanced wireless communi-
cation models such as modeling the transmission rate as a function of the transmission distance. For
the case of multiple-collectors whose transmissions are subject to interference constraints, we intend
to study interference models that do not restrict the collectors’ motion to a grid. Note that such a
joint server routing and scheduling problem is significantly more involved. For instance, the stability
region of such a system depends on the interference constraints, and it is unknown since there are
uncountably many possible activation vectors.

Appendix A - Proof of Theorem 1

We first show that the unfinished work and the delay experienced by a message in the system stochas-
tically dominates that in the equivalent system with zero travel times for the collector.

Lemma 5 The steady state time average delay in the system is at least as big as the delay in the
equivalent system in which travel times are considered to bezero (i.e.,v = ∞).

Proof Consider the summation of per-message reception and traveltimes,s anddi, as the total service
requirement of a message in each system. Sincedi is zero for alli in the infinite speed system and
since the reception times are constant equal tos for both systems, the total service requirement of each
message in our system is deterministically greater than that of the same message in the infinite speed
system. LetDi andD

′

i, i = 1, 2..., be the departure instant of theith message in the original and the
infinite speed system respectively. Similarly letAi, i = 1, 2... be the arrival time of theith message
in both systems. We will use induction to prove thatDi ≥ D

′

i for all i. We trivially haveD1 ≥ D
′

1.
Furthermore,

An+1 ≤ Dn+1 − s, (32)

hence then + 1th message is available before the timeDn+1 − s. Using the induction hypothesis,
Dn ≥ D

′

n, we have
D

′

n ≤ Dn ≤ Dn+1 − s,

where the second inequality is because we need at leasts amount of time between thenth andn+1th

transmissions. Hence the collector is available in the infinite speed system before the timeDn+1 − s.
Combining this with (32) proves the induction.

Now letD(t) andD
′

(t) be the total number of departures by timet in our system and the infinite
speed system respectively. Similarly letN(t) andN

′

(t) be the total number of messages in the two
systems at timet. Finally letA(t) be the total number of arrivals by timet in both systems. We have
A(t) = N(t)+D(t) = N

′

(t)+D
′

(t). Using the result of the above induction we haveD(t) ≤ D
′

(t)
and therefore

N(t) ≥ N
′

(t).

Since this is true at all times, we have that the time average number of customers in the system is
greater than that in the infinite speed system. Finally usingLittle’s law proves the lemma. ut

Since the infinite speed system is an M/G/1 queue (an M/G/1 queue is a queue with Poisson arrivals,
general i.i.d. service times and 1 server and an M/D/1 queue has constant service times), the average
waiting time in this system is given by the Pollaczek-Khinchin (P-K) formula for M/G/1 queues [7, p.
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189], i.e.,λs2/(2(1− λs)). Therefore we have (1). Furthermore, a direct consequence of this lemma
is that a necessary condition for stability in the infinite speed system is also necessary for our system.
It is well-known that the necessary (and sufficient) condition for stability in the M/G/1 queue is given
by ρ < 1 (see e.g., [7] or [22]). ut

Appendix B - Proof of Theorem 5

The proof is similar to the proof of Theorem 1. First considerthe following lemma.

Lemma 6 The steady state time average delay in the system is at least as big as the delay in the
equivalent system in which travel times are considered to bezero (i.e.,v = ∞).

Proof Similar to the proof of Lemma 5, the total service requirement of a given messagei, s+ di, is
deterministically greater than that of the same message in the infinite speed system. Similarly, letDi

andD
′

i, andAi, i = 1, 2, ..., be the departure and arrival instants of theith message in the original
and the infinite speed system. We usecomplete inductionto prove thatDi ≥ D

′

i for all i. We trivially
haveD1 ≥ D

′

1. Assume we haveDi ≥ D
′

i for all i ≤ n. We need to show thatDn+1 ≥ D
′

n+1 in
order to complete the complete induction. We have

An+1 ≤ Dn+1 − s, (33)

hence then+ 1th message is available at timeDn+1 − s. We also have

D
′

n+1−m ≤ Dn+1−m ≤ Dn+1 − s.

The first inequality is due to the complete induction hypothesis and the second inequality is due the
fact that themth last departure before then + 1th departure has to occur before the timeDn+1 − s.
Hence there is at least one collector available in the infinite speed system before the timeDn+1 − s.
Combining this with (33) proves the complete induction.

Similar to the proof of Lemma 5, letD(t),D
′

(t) andN(t),N
′

(t) be the total number of departures
from the two systems by timet and the total number of messages waiting for service in the two systems
at timet respectively. Also letA(t) be the total number of arrivals by timet in both systems. We have
A(t) = N(t)+D(t) = N

′

(t)+D
′

(t). From the above induction we haveD(t) ≤ D
′

(t) and therefore
N(t) ≥ N

′

(t). Since this is true at all times, we have that the time averagenumber of customers in the
system is greater than that in the infinite speed system. Finally using Little’s law proves the lemma.

ut

When the travel time is considered to be zero, the system becomes an M/D/m queue (a queue with
Poisson arrivals, constant service time andm servers). Therefore we can boundT ∗

m using bounds for
general G/G/m systems. In particular, the waiting timeWG/G/m in a G/G/m queue with service time
s is bounded from below by [28, p. 48]

WG/G/m ≥ Ŵ − m− 1

m

s2

2s
, (34)

whereŴ is the waiting time in a single server system with the same arrivals as in the G/G/m queue and
service times/m. Since in our case the infinite speed system behaves as an M/D/m system,Ŵ has an
exact expression given by the P-K formula:Ŵ = λs2/(2m2(1 − ρ)) whereρ = λs/m. Substituting
this in (34) and using Lemma 6 we have (13).
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Appendix C - Proof of Lemma 2

Clearlyh(.) = f(.).g(.) is increasing. Letx andy be two points in the domain ofh and letα ∈ (0, 1)
be a real number.

h(αx+ (1− α)y) = f(αx + (1− α)y)g(αx + (1− α)y)

≤ (αf(x) + (1 − α)f(y))(αg(x) + (1− α)g(y))

= α2f(x)g(x) + (1− α)2f(y)g(y) + α(1−α)f(x)g(y)+α(1−α)f(y)g(x),

where the inequality is due to the convexity off andg. We add and subtractαf(x)g(x) and after
some algebra obtain

h(αx + (1− α)y) ≤ αh(x) + (1− α)h(y) + α(1 − α)(f(x) − f(y))(g(y)− g(x))

≤ αh(x) + (1− α)h(y),

where the last inequality is due to the fact thatf andg are increasing functions.

Appendix D - Proof of Lemma 3

It is clear thath(x) is an increasing function ofx. Let x, y ≥ 0 be two points in the domain ofh and
let α ∈ (0, 1) be a real number.

h(αx+ (1 − α)y) = = (αx + (1− α)y)max(0, c1
√

αx+ (1− α)y − c2)

= max(0, c1(αx + (1− α)y)
3

2 − c2(αx+ (1 − α)y))

≤ max
(

0, c1(αx
3

2 + (1− α)y
3

2 )− c2(αx + (1− α)y)
)

= max
(

0, αx(c1
√
x− c2) + (1 − α)y(c1

√
y − c2)

)

≤ max
(

0, αx(c1
√
x−c2)

)

+max
(

0, (1−α)y(c1
√
y−c2)

)

= αh(x) + (1− α)h(y),

where the first inequality is due to the convexity of the functionx
3

2 . This shows thath(x) is a convex
and increasing function.

Appendix E - Proof of Theorem 8

We prove Theorem 8 for a broader class of arrival processes. We assume that each celli has an arrival
processAi(t) that is i.i.d. over time and that satisfiesE[Ai(t)

2] ≤ A2
max independent of the number

of messages in the system, which is satisfied if the overall arrival process into the system is Poisson.
Note that we haveE[Ai(t)] = λis independent of the number of messages in the system. Lettk,
k = 0, 1, ..., be the first time slot of thekth frame. LetDi(t), t ∈ {tk + Tr, tk+1 − 1}, be1 if cell
i is scheduled to be active during thekth frame and zero otherwise. Note thatDi(t) is theservice
opportunitygiven to celli at time slott and not the actual departure process. LetNi(t) be the number
of messages in celli at the beginning of the time slott. Recall that for simplicity we assume that the
departures occur before the arrivals which takes place at the end of time slots. We have the following
queue evolution relation.

Ni(t+ 1) = max {Ni(t)−Di(t), 0}+Ai(t).

Similarly, the followingT -step queue evolution expression holds:

Ni(tk + T ) ≤ max

{

Ni(tk)−
T−1
∑

τ=0

Di(tk + τ), 0

}

+

T−1
∑

τ=0

Ai(tk + τ).
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The inequality is due to the fact that celli might become empty and that some arrivals depart during
the frame. Squaring both sides we have,

(Ni(tk+T ))2−(Ni(tk))
2 ≤

(

T−1
∑

τ=0

Di(tk+τ)
)2

+
(

T−1
∑

τ=0

Ai(tk+τ)
)2

−2Ni(tk)
(

T−1
∑

τ=0

Di(tk+τ)−
T−1
∑

τ=0

Ai(tk+τ)
)

.

(35)
Define the quadratic Lyapunov function

L(N(tk)) =
K
∑

i=1

N2
i (tk),

and theT -step conditional Lyapunov drift

∆T (tk) , E
{

L(N(tk + T ))− L(N(tk))
∣

∣N(tk)
}

.

Summing (35) over the queues, taking conditional expectation, usingDi(t) ≤ 1 for all time slotst,
E{Ai(t)

2} ≤ A2
max andE{Ai(t1)Ai(t2)} ≤

√

E{Ai(τ1)}2E{Ai(τ2)}2 ≤ A2
max for all τ1 andτ2 we

have

∆T (tk) ≤ KBT 2+ 2E

{

∑

i

Ni(tk)

T−1
∑

τ=0

[Ai(tk + τ)−Di(tk + τ)]
∣

∣N(tk)

}

= KBT 2 + 2T
∑

i

Ni(tk)λis− 2
∑

i

Ni(tk)E

{

T−1
∑

τ=0

Di(tk + τ)
∣

∣N(tk)

}

whereB = 1+A2
max is a constant. Note thatDi(t+τ) = 0, ∀i ∈ {1, ...,K} for τ ∈ {0, 1, ..., Tr−1}

since the system is idle for the firstTr slots of the frame under the FMW policy. Therefore,

∆T (tk) ≤ NBT 2 + 2T
∑

i

Ni(tk)λis− 2
∑

i

T−1
∑

τ=Tr

Ni(tk)E
{

Di(tk + τ)
∣

∣N(tk)
}

Now using the fact that for any load vectorρ = λs that is strictly insideΛ0, there exist real numbers
α1, ..., α|I| such thatαj > 0, ∀j ∈ 1, ..., |I|,∑|I|

j=1 αj = 1− ε for someε > 0 and

ρ =

|I|
∑

j=1

αjI
j

whereIj is aK dimensional vector inI. Over the time interval[t+ Tr, t+ T − 1], the FMW policy
applies the activation vector that has the property

I
∗(tk) = argmax

I∈I
N(tk).I. (36)

Therefore
∑

iNi(tk)Di(tk + τ) = N(tk).I
∗(tk). Hence we have

∆T (tk) ≤ KBT 2 + 2TN(tk).





|I|
∑

j=1

αjI
j



− 2T (1− Tr

T
)N(tk).I

∗(tk)

= KBT 2 − 2T

|I|
∑

j=1

αj(N(tk).I
∗(tk)−N(tk).I

j)− 2T (1−
|I|
∑

j=1

αj)N(tk).I
∗(tk) + 2TrN(tk).I

∗(tk)

≤ KBT 2 − 2T εN(tk).I
∗(tk) + 2TrN(tk).I

∗(tk)

= KBT 2 − 2T (ε− Tr

T
)N(tk).I

∗(tk) (37)
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Note that we haveN(tk).I
∗(tk) ≥ 1

K

∑

i Ni(tk) since the maximum weight schedule has more
weight than the average. Therefore, forT > Tr

ε we have

∆T (tk) ≤ KBT 2 − 2T (ε− Tr

T
)
1

K

∑

i

Ni(tk). (38)

Therefore, theT -step conditional Lyapunov drift is negative ifT > Tr

ε and if the queue sizes are
outside a bounded set. The stability result now follow from [38] or Section 4.2.
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