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Abstract-Orbital break-ups produce a large number of fragments, which constitute an obvious hazard 
for other satellites in nearby orbits. Of these fragments, many are too small to be detected by ground-based 
facilities: this leads to the need for mathematical modelling as a tool for adequate risk analysis. In this 
paper an average spatial density model is presented. It is based on the Gauss analogy and, for unperturbed 
Keplerian orbits, it matches the asymptotic density model developed by other authors. 

Risk analysis for satellite constellations is an interesting application of debris cloud evolution models: 
the survivability of a constellation as a whole following the break-up of one of its satellites is obviously 
of primary concern in the constellation design. Risk analysis is conducted over a number of traditional 
configurations in order to achieve an additional constraint on the design parameters. Results indicate the 
remarkable influence of the fragmentation point position along the orbit; moreover, the higher risk for 
low orbit and the advantage of placing more satellites on a limited number of planes are assessed. 
0 1997 Published by Elsevier Science Ltd. All rights reserved. 

1. INTRODUCITON 

As a result of the overcrowding of the Earth orbital 
environment, collision risks due to man-made debris 
have recently become a primary concern for all space 
missions. A detailed knowledge of the orbiting 
objects, population characteristics is necessary in 
the selection of the orbital altitude for a mission. 
This is true for a one satellite mission, and even 
more for satellite constellations, when the fragmenta- 
tion of a single platform could start a catastrophic 
collisional cascading, due to the continuous orbital 
crossing. 

The forecasting of the possible behaviours has, as 
its first step, the modelling of the evolution of the 
cloud deriving from the break-up of one of the 
platforms. Four phases are usually considered in the 
debris cloud evolution[l]: a pulsating ellipsoid, a 
torus with a pinch point corresponding to the 
fragmentation point, a band caused by the differential 
rotation of the orbits under the effects of pertur- 
bations, and a final stage where everything can be 
considered as being reduced to a background debris 
population (or even removed from the orbital 
environment by atmospheric drag). 

TPaper IAA-94-IAA.6.2.677 presented at the 45th Inter- 
national Astronautical Congress, Jerusalem, 914 October 
1994. 

Crowther previously investigated the problem, 
giving a solution devoted to assess the risk of collision 
since the break-up of one satellite[2]. Crowther’s 
solution is mostly related to the first phase of the 
cloud evolution, as it takes into account the pulsating 
ellipsoid behaviour. 

In this paper, a different approach, based on the 
average spatial density, with the fragmented mass 
spread along the orbit, is presented. In such a way, 
time is no longer directly taken into account, but 
some useful considerations could be retained about 
the importance of the fragmentation position, and the 
geometry of the problem will nevertheless be 
preserved. 

While the model described here is devoted to the 
second phase analysis, it could be noted that, in 
the case of the considered constellations, the third 
phase band will be very extended in space. Actually, 
the extension of the band is limited in latitude by 
the inclination of the original orbit, which is 
quite high (this is no question for polar models, but 
Walker configurations also usually have inclination 
angles of about 50 degrees). As a consequence the 
fragment density during the third phase will be very 
low. 

The mathematical model is described in the next 
two paragraphs, and some results for classical 
constellation configurations are presented and dis- 
cussed. 
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2. COLLISION PROBABILITY 

A widely used expression[3] to determine the 
collision probability (PC) as a satellite crosses a 
debris cloud is: 

F = pAVEi, 

where p is the cloud density, V,, is the relative velocity 
of the satellite with respect to the cloud, and A is the 
cross-sectional area of the satellite. 

The collision probability can be evaluated along 
the whole orbit: 

pc, = W’C)ortat 1 
orbital period = !? o s 

’ pA v , d,. 

” (2) 

In this paper we are interested in evaluating the 
survivability of a constellation after the fragmenta- 
tion of one of its n satellites; the overall collision 
probability can be expressed as: 

PC’TOT = i PC;. 
,=I 

(3) 

In the evaluation of the relative velocity an average 
cloud velocity can be defined; in the case of an 
isotropic break-up it turns out to be the original 
satellite orbital velocity V. Then V,,, can be expressed 
as: 

V,, = 2 V sin : 
0 

, 

where y is the angle between the orbital planes of the 
jth satellite and of the fragmented one Fig. 1. 

A remarkable consequence of the above stated 
relations is that collision probabilities involving the 
satellites in the same plane as the fragmented one are 
not considered. However, relative velocities between 
objects sharing the same orbital plane (of the order 
of 100 m/s) are much smaller than those arising from 
the intersection of two different orbital planes (about 
10 km/s for LEO constellations). 

The only term left to be evaluated in eqn (3) is the 
cloud density. Usually the short term evolution of the 

Fig. 1. Angles between orbital planes. 

cloud is analysed making use of the linearised 
equations of the relative motion[46]. However, as 
the cloud dimensions increase, the errors deriving 
from the linearisation process can no longer be 
neglected. In the following, we will discuss a different 
approach, involving the determination of the time 
averaged spatial density; such an approach enables us 
to obtain exact results for keplerian orbits. 

3. CLOUD DENSITY EVALUATION 

The averaged density is defined as: 

(5) 

Its physical meaning is related to the number of 
objects that can be statistically expected to be found 
in a unitary volume at an arbitrarily chosen time. 

In this paper we will carry out the calculations in 
detail for the 2D case, giving only the results for the 
3D case. In this way, we can explain how to obtain 
the average density expression, without having to 
resort to cumbersome, if not really difficult, formulas 
(a complete derivation of both the 2D and 3D cases 
can be found in Ref. [7]). 

The first step is the evaluation of the density for a 
single orbit: 

P,(r, c) = A$ (1 - e’)W 6[r - i(& P, v)], (6) 

where r and v are the radius and the anomaly from 
the fragmentation point, 6 is the Dirac delta, i and 
.Z are the (specific) angular momentum and eccentric- 
ity vectors, and finally: 

h2/p 
I-= 1 +ecose. 

Equation (6) is equivalent to considering the satellite 
mass as being distributed along its orbit and not 
concentrated (Gauss analogy). 

The density of the cloud can be evaluated by 
integrating eqn (6) over all the orbits originated in the 
fragmentation (if not otherwise stated, the integration 
domain is considered to be the set of all the possible 
values of the independent variables): 

p(r, u) = p,(r, u, 6, P)f(& 2) di; d& (8) 

In eqn (8)fis a function describing the probability 
distribution for the orbits generated in the fragmenta- 
tion event. 

As a matter of fact, calculations are made easier if 
we consider as independent variables in the above 
integral the perturbed velocity due to the parent 
satellite disintegration. 

Thus, we can write: 

’ P(r, u) = !& 
s 

(’ -hc$))3” 3*&r - i)g(e dp, (9) 
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where: 

‘v = ]V,, K]‘, 

h = V,ro; 

In this case, the break-up velocity distribution can be 
expressed as: 

g( ii = ; b[(V, - VI,)’ + (V, - VJ2 - A ul]; 

Since we are interested in circular parent orbits, eqn 
(12) can be rewritten: 

Equation (9) can be simplified: P(r, v) = L 
2~: sin4 v 

~(r..,=~S~rz~~~~,=~dv~~ (lo) .SJsin2v-B’-~~2BBacosv13”~~~~~ldv, (13) 

I , 

where V,? is the root of the equation i = r, that 
is: 

h* 
p + p/I,, cos v + V,h sin u = r 

solved for V,. 
Substitution yields: 

P(r,o) = p2 
2xri sin4 v 

s 

Isin u - B* - /Ii + 2gf10 cos 01~‘~ 
3 

“I 

‘g q$&j (PO ~0s - B), K 
> 

dV,, 

where: 

/&!ip 

where: 

(11) $( V,):= 00 cos v - B) 
r. V, sin v y+(V,-&AI? 

(14) 

Equation (13) can be evaluated: 

p(r, v) = ‘* 
2x2rt sin4 v 

. c (sin2 0 - /I2 - fli + Z/?/IO cos v1312 

mw/w 9 (19 
h = h) 

(12) 
where h: are the roots of the equation 

l(l(V,) = 0. 

The stated equation is a quartic, with two real roots. 
If tl<< 1, it is possible to define: 

{:=- r;ro, ICI<<1 

This expression of the average density matches (apart 
from a 27c factor) the results obtained by Heard for E(C, tog= 

v, - VQ 
v , ]cl<<l, c(O,O)=O. (16) 

asymptotic density[8]. Actually, if the spatial density 10 

p approaches a constant value as time increases, it Using the relations (16) in (14) and (1 S), and retaining 

can be seen from eqn (5) that the average and only the lower order terms: 

asymptotic densities are the same. 1 1 
Heard found a useful approximation for the 

integral (12) for an isotropic break-up, in which all 
p(r,u)=zJm’ 

the fragments are ejected with a AV much smaller where: 

than the orbital velocity, that is: u2:=sin2 v + 4( 1 - cos v)*. 

.:A?<< 1. 
vo 

The results obtained so far can be extended to the 3D 
case[6]: 

cos2 qlsin 01 
PO.3 8, cp) = & (1 _ cos2 (j cos2 rp)3. 

s 

I1 - cm2 8 cos2 cp - p - /?o + 2/L?& cos e cos (PI”2 
v: 

. g fi(& cos 0 cos rp - fl)cos &in 01 
r. V,( 1 - cos2 0 cos* cp) , VI, vts 

> 
dV, (17) 
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Fig. 2. Torus phase in debris cloud evolution 

and 

where: 

(19) 

Given an isotropic velocity perturbation distri- 
bution r(a), it is possible to write: 

(20) 

The relations stated above are a useful tool for 
evaluating the cloud density, given the initial 
conditions at the break-up[9]. 

It is interesting to remark that the density 
distributions given above are singular at the original 
fragmentation point and on a line 180 degrees away 
(pinch point and pinch line) (Fig. 2). 

4. RESULTS FOR STANDARD CONSTELLATION MODELS 

In satellite constellation design the collision risk 
evaluation should be a primary object of concern: 
more than simply considering the background debris 
level as in every space program, one has to take into 
account the risk for a catastrophic break-up of the 
entire constellation due to the fragmentation of a 

l.EU2 

single platform, whose orbit will be continuously 
crossed by the other ones. 

Figures 3-6 represent some results, obtained using 
the model previously described, of the interaction 
between the debris cloud, originated by a satellite 
belonging to a constellation, and the remaining 
platforms. 

Since our model deals with an averaged density, the 
results have a meaning in space variables only, 
because we lost the explicit dependence on time 
during the averaging process. For this reason our 
attention will be focused on the position of the 
break-up event along the orbit. More precisely, the 
collision probability as a function of the anomaly of 
the fragmentation point will be analysed. 

4.1. Polar constellation results 

Two models (i.e. the most popular ones, actually 
considered in practical design) are considered in the 
following. The first one is the polar model (Fig. 7 and 
Table l), introduced by Liiders [lo] and developed by 
Rider [11,12] and Adams [12]: the satellites are 
equally distributed among P planes, with the 
interplane angle always equal to n/P in the general 
case (arbitrarily phased). Some improvement in the 
coverage properties could be obtained by controlling 
the relative motion of the satellites belonging to 
different planes (phased constellation case, with the 
inter-plane angle depending on the nature of the 
interfacing satellites, if co- or counter-rotating). 
From the debris collision point of view, there is no 
difference between these two cases, as the variations 
in the relative velocities, coming from eqn (4) and due 
to the slight shift of y values, are not actually relevant 
to the problem. 

As we can expect, results show that the risk of a 
collision with objects coming from the fragmentation 
has a strong peak (actually a singular point) if 
the explosion of a satellite takes place near the pole 
(Fig. 3). The reason for the singularity is that, in the 
unperturbed orbit approximation, all the satellites, as 
well as all the produced fragments, will pass through 
this point. For other locations, risk is definitely at a 
lower level. 

l.E-05 1 
0 0.5 1 1.5 2 2.5 3 

k#nrlyo 

Fig. 3. Results for polar constellations-collision probability vs fragmentation event position along the 
orbit. 
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Fig. 4. Results for Walker constellations. 

Moreover, the collisional risks are higher for low 
altitude constellations: the increased danger comes 
from two different causes. The first one is a reduced 
orbital length, making the density higher for an equal 
fragmented mass; the second one is the higher 
satellite number needed to cover the globe from 
limited altitudes, increasing the number of potential 
colliders. 

4.2. Walker constellation results 

A little more interesting is the Walker S model case 
(Fig. 8), where the T satellites are placed in the most 
uniform way, equally distributed among P planes, 
which are equally inclined and spaced along the 
equator, the configuration being identified by the 
triple code T/P/F (where F gives the position-phase 
of a reference satellite). 6 (i.e. the inclination 
parameter) values are classically in the order of 55” 
in the case of global coverage, and this important 
example will be considered in the following. 

The plot of the risk distribution versus the 
fragmentation event position shows a certain number 

1 .EU2 

1 .EM 

of peaks (Fig. 4), related to the intersection between 
the orbital planes. Distances between the peaks are 
not equal, as the lengths of the arcs are actually 
different (arc AB is shorter than BC in Fig. 8). Even 
if we consider that the peaks are singular points, and 
a certain attention must be devoted to manage them, 
a certain effect of broadening in the central area, 
where peaks are closer, is easy to be identified. 

Some general remarks could be made on the basis 
of the previous result. Still keeping in mind that the 
model adopted is only valid until the perturbation 
effect is not so strong as to destroy the torus, we can 
positively conclude that the fragmentation event 
position is quite important: fragmentations in the 
equatorial zone are less dangerous than those 
happening at higher latitudes. 

It could be useful to compare the risk of collision 
resulting from the fragmentation of one of the 
satellites of the constellation to that deriving from the 
pre-existing background. For example, data about 
the debris background taken from [ 131 could be 
compared with our results. 

0 0.5 1 1.5 2 2.5 3 

Arnanrlro 

Fig. 5. Globalstar results. 
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Fig. 6. Iridium results 

Concerning the effective design of the constella- 
tions, a basic question is the trade-off between the 
number of the satellites placed on each plane and the 
number of the planes. Actually, it comes from 
considerations about the launch effort, due to the 
advantages coming from clustered launches, and in 
certain cases about the ground station architecture, 
that it is better to have a reduced number of planes. 
Now, also from debris considerations we can 
conclude that many satellites on a small number of 
planes should be better than the opposite (see Fig. 4, 
where data from Walker constellations with equal 
satellites number but different P and S = T/P are 
presented). 

4.3. Actual constellations results 

Finally the previously described cloud density 
model is applied to actual constellation designs, in 
both the cases of Globalstar and Iridium. Obviously 
the results match the previously presented ones 

Fig. 7. Polar constellation model. 

(Iridium is quite polar, with i = 86.4” while 
Globalstar is similar to the Walker model). 
Globalstar distributes 48 satellites into 8 planes, with 
an altitude of 1389 km and an inclination of 52”. 
About Iridium, 66 satellites in 6 planes, h = 780 km, 
i = 86.4”. Results are plotted in Figs 5 and 6. 

5. CONCLUSIONS 

The evaluation of the collisional risk, which is an 
important parameter for all space missions, acquires 
a special significance in satellite constellation design, 
as a result of the possibility of a catastrophic 
cascading. 

In the case of fragmentation of one of the 
constellation satellites, the model presented in this 
paper can be used to assess the survivability of the 
constellation as a whole, marking the importance of 
the position of the fragmentation event along the 
orbital path. 

However, we are aware of some points in the model 
which need further development. First of all the 
model does not take into account the satellites placed 
in the same plane as the fragmented one. Actually this 
feature lowers the number of possible colliders, but 

Table 1. Polar constellaton data 

Number of Number of Orbit radius 
satellites planes (km) 

21 3 8174 
27 3 7838 
32 b 7473 
36 4 1346 
44 4 7195 
50 5 705 I 
55 5 699lI 

Table 2. Walker constellation data 

Number of Number of Orbit radius 
satellites planes (km) 

15 3 8596 
15 5 8679 
15 15 8679 



Fig. 8. Walker constellation model. 

6. W. B. Heard, Dispersion of non-interacting particles. 

the cloud behaviour suggests that the differences in Asrronhvsics. and Snare Science 43. 63-82 (1976). 

the relative velocities, so important in collision 
7. E. Fr&oli, DensiG media di una &be di frammenti. 

phenomena, are strictly limited between satellites (or 
Quaderni di Astrodinamica 2,91-104. Esagrafica, Rome 
(1995). 

objects coming from their fragmentation) belonging 8. W. B. Heard, Asymptotic distribution of particles from 
to the same orbital plane. fragmented celestial bodies. The Astronomical Journal 

The main weakness of the model can possibly be 82, 1025-1035 (1977). 

given by the singularities in the density distribution 
9. D. S. McKnight, Determination of breakup initial 

(pinch point and pinch line), which is the reason for 
Conditions. Journal of Spacecraft 28, 470-476 (1991). 

10. R. D. Liiders, Satellite networks for continuous zonal 
the peaks in the collision probabilities plots. These coverage. ARS Journal 31, 179-184 (1961). 

singularities present problems for both numerical and 1 I. L. Rider, Optimized polar constellations for redundant 

theoretical reasons. The numerical problem of 
earth coverage. The Journal of Astronautical Sciences 

integrating eqn (2) near the singularities is not really 
33, 147-161 (1985). 

12. W. S. Adams and L. Rider, Circular polar constellations 
difficult to overcome (from an analytical point of providing continuous single or multiple coverage above 

view, the singularities can be integrated), but we a specified latitude. The Journal of Astronautical 

believe that that expression for the collision Sciences 35, 155192 (1987). 

probability can no longer be used for high values of 
13. D. J. Kessler, Orbital debris environment for spacecraft 

in low earth orbit. Journal of Spacecraft, 28, 347-351 

Further developments could finally be aimed at 
dealing with non-circular orbits: this will allow the 
analysis of different constellations models (as the 
Draim’s one). 
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