7 research outputs found

    Rock magnetic investigation of possible sources of the Bangui magnetic anomaly

    No full text
    International audienceThe Bangui magnetic anomaly (BMA) is the largest lithospheric magnetic field anomaly on Earth at low latitudes. Previous studies investigated its geological source using constraints from satellite and ground magnetic field measurements, as well as from surface magnetic susceptibility measurements on rocks from the Panafrican Mobile Belt Zone (PMBZ). Here we combine magnetic field data modelling and rock magnetic property measurements (susceptibility and natural remanent magnetization, NRM) on many samples from this PMBZ and the surrounding formations. It reveals that NRM is a significant component of the total magnetization (Mt) of the BMA source, which reaches 4.3 A/m with maximum thicknesses of 38 and 54 km beneath the western and eastern parts of the BMA. Only the isolated and relatively thin banded iron formations and some migmatites show such Mt values. Thus we suggest that the thick BMA source may be composed either by overlapped slices of such metamorphic rocks, or by an iron-rich mafic source, or by a combination of these two geological structures

    Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    Get PDF
    International audienceThe Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D-2 and D-3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 +/- 17 Ma (Rb/Sr) for D-1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D-2-D-3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement

    Transpressional granite-emplacement model: Structural and magnetic study of the Pan-African Bandja granitic pluton (West Cameroon)

    No full text
    International audienceThe Pan-African NE-SW elongated Bandja granitic pluton, located at the western part of the Pan-African belt in Cameroon, is a K-feldspar megacryst granite. It is emplaced in banded gneiss and its NW border underwent mylonitization. The magmatic foliation shows NE-SW and NNE-SSW strike directions with moderate to strong dip respectively in its northern and central parts. This mostly, ferromagnetic granite displays magnetic fabrics carried by magnetite and characterized by (i) magnetic foliation with best poles at 295/34, 283/33 and 35/59 respectively in its northern, central and southern parts and (ii) a subhorizontal magnetic lineation with best line at 37/8, 191/9 and 267/22 respectively in the northern, central and southern parts. Magnetic lineation shows an `S' shape trend that allows to (1) consider the complete emplacement and deformation of the pluton during the Pan-African D-2 and D-3 events which occurred in the Pan-African belt in Cameroon and (2) reorganize Pan-African ages from Nguiessi Tchakam et al. (1997) compared with those of the other granitic plutons in the belt as: 686 +/- 17 Ma (Rb/Sr) for D-1 age of metamorphism recorded in gneiss; and the period between 604-557 Ma for D-2-D-3 emplacement and deformation age of the granitic pluton in a dextral ENE-WSW shear movement

    Major elements, trace elements and Sr-Nd-Pb isotopes form lavas of lakes Nyos, Wum, Elum and Oku sampled in the Oku Volcanic Group of the Cameroon Volcanic Line

    No full text
    Lake Nyos is located at the summit of a stratovolcano in the Oku Volcanic Group (OVG) along the Cameroon Volcanic Line. The sudden release of magmatic CO2 trapped at the bottom of Lake Nyos in August 1986 caused historical casualties of 1750 people and over 3000 cattle. New geochemical data of volcanic rocks from the Nyos volcano and the first available data for volcanic rocks from other maar-bearing volcanoes (Lakes Elum, Wum and Oku) in the OVG are presented and compared. Lavas from the Nyos, Elum and Wum volcanoes show similarities in major and trace elements and Sr?Nd?Pb isotopes, suggestive of a similar mantle source. However, this source is slightly different from that of the Oku volcano. The samples from Lake Oku have lower alkali, higher TiO2 and more depletion and enrichment in most incompatible trace elements than those from the Nyos, Elum and Wum volcanoes. These differences and those observed in the Sr?Nd?Pb results are consistent with a heterogeneous source for lavas in the OVG. Trace element compositions suggested the presence of garnet in the source (< 6% garnet) and modelled melting results indicate < 2% partial melting of the source material. Isotope data plot within the focal zone, extending towards enriched mantle 1 (EM1; e.g. Lakes Oku and Nyos samples). This indicates the involvement of at least three mantle components: depleted mid-ocean ridge basalt mantle, high-µ and EM1 components in the magmatism of the lavas studied. The contributions of these components in different proportions, originating from asthenospheric and subcontinental lithospheric mantle sources, can account for the observed variations in geochemical characteristics. The geochemical characteristics of the studied lavas indicate that the magma source need not necessarily have an abnormal CO2 concentration to pose a potential threat. Degassing of an ordinary magma chamber and the migration of gas to the bottom of the lakes through cracks and faults can lead to the accumulation of CO2 in lake bottoms. This is controlled by tectonic parameters (fractures and faults) that enhance degassing from the magma chamber to the lake bottom and physical parameters of the lake (e.g. size, depth, temperature and solubility) that control CO2 stability
    corecore