183 research outputs found

    The C-Terminal Domain of the Arabinosyltransferase Mycobacterium tuberculosis EmbC Is a Lectin-Like Carbohydrate Binding Module

    Get PDF
    The D-arabinan-containing polymers arabinogalactan (AG) and lipoarabinomannan (LAM) are essential components of the unique cell envelope of the pathogen Mycobacterium tuberculosis. Biosynthesis of AG and LAM involves a series of membrane-embedded arabinofuranosyl (Araf) transferases whose structures are largely uncharacterised, despite the fact that several of them are pharmacological targets of ethambutol, a frontline drug in tuberculosis therapy. Herein, we present the crystal structure of the C-terminal hydrophilic domain of the ethambutol-sensitive Araf transferase M. tuberculosis EmbC, which is essential for LAM synthesis. The structure of the C-terminal domain of EmbC (EmbCCT) encompasses two sub-domains of different folds, of which subdomain II shows distinct similarity to lectin-like carbohydrate-binding modules (CBM). Co-crystallisation with a cell wall-derived di-arabinoside acceptor analogue and structural comparison with ligand-bound CBMs suggest that EmbCCT contains two separate carbohydrate binding sites, associated with subdomains I and II, respectively. Single-residue substitution of conserved tryptophan residues (Trp868, Trp985) at these respective sites inhibited EmbC-catalysed extension of LAM. The same substitutions differentially abrogated binding of di- and penta-arabinofuranoside acceptor analogues to EmbCCT, linking the loss of activity to compromised acceptor substrate binding, indicating the presence of two separate carbohydrate binding sites, and demonstrating that subdomain II indeed functions as a carbohydrate-binding module. This work provides the first step towards unravelling the structure and function of a GT-C-type glycosyltransferase that is essential in M. tuberculosis. Author Summary Top Tuberculosis (TB), an infectious disease caused by the bacillus Mycobacterium tuberculosis, burdens large swaths of the world population. Treatment of active TB typically requires administration of an antibiotic cocktail over several months that includes the drug ethambutol. This front line compound inhibits a set of arabinosyltransferase enzymes, called EmbA, EmbB and EmbC, which are critical for the synthesis of arabinan, a vital polysaccharide in the pathogen's unique cell envelope. How precisely ethambutol inhibits arabinosyltransferase activity is not clear, in part because structural information of its pharmacological targets has been elusive. Here, we report the high-resolution structure of the C-terminal domain of the ethambutol-target EmbC, a 390-amino acid fragment responsible for acceptor substrate recognition. Combining the X-ray crystallographic analysis with structural comparisons, site-directed mutagenesis, activity and ligand binding assays, we identified two regions in the C-terminal domain of EmbC that are capable of binding acceptor substrate mimics and are critical for activity of the full-length enzyme. Our results begin to define structure-function relationships in a family of structurally uncharacterised membrane-embedded glycosyltransferases, which are an important target for tuberculosis therapy

    Crystal structure and mechanism of human lysine-specific demethylase-1

    Get PDF
    The reversible methylation of specific lysine residues in histone tails is crucial in epigenetic gene regulation. LSD1, the first known lysine-specific demethylase, selectively removes monomethyl and dimethyl, but not trimethyl modifications of Lys4 or Lys9 of histone-3. Here, we present the crystal structure of LSD1 at 2.9-Γ… resolution. LSD1 forms a highly asymmetric, closely packed domain structure from which a long helical 'tower' domain protrudes. The active site cavity is spacious enough to accommodate several residues of the histone tail substrate, but does not appear capable of recognizing the different methylation states of the substrate lysine. This supports the hypothesis that trimethylated lysine is chemically rather than sterically discriminated. We present a biochemical analysis of LSD1 mutants that identifies crucial residues in the active site cavity and shows the importance of the SWIRM and tower domains for catalysis

    Fasciola hepatica calcium-binding protein FhCaBP2: structure of the dynein light chain-like domain

    Get PDF
    The common liver fluke Fasciola hepatica causes an increasing burden on human and animal health, partly because of the spread of drug-resistant isolates. As a consequence, there is considerable interest in developing new drugs to combat liver fluke infections. A group of potential targets is a family of calcium-binding proteins which combine an N-terminal domain with two EF-hand motifs and a C-terminal domain with predicted similarity to dynein light chains (DLC-like domain)

    The dynamic stator stalk of rotary ATPases

    Get PDF
    Rotary ATPases couple ATP hydrolysis/synthesis with proton translocation across biological membranes and so are central components of the biological energy conversion machinery. Their peripheral stalks are essential components that counteract torque generated by rotation of the central stalk during ATP synthesis or hydrolysis. Here we present a 2.25-Γ… resolution crystal structure of the peripheral stalk from Thermus thermophilus A-type ATPase/synthase. We identify bending and twisting motions inherent within the structure that accommodate and complement a radial wobbling of the ATPase headgroup as it progresses through its catalytic cycles, while still retaining azimuthal stiffness necessary to counteract rotation of the central stalk. The conformational freedom of the peripheral stalk is dictated by its unusual right-handed coiled-coil architecture, which is in principle conserved across all rotary ATPases. In context of the intact enzyme, the dynamics of the peripheral stalks provides a potential mechanism for cooperativity between distant parts of rotary ATPases

    A Helix Replacement Mechanism Directs Metavinculin Functions

    Get PDF
    Cells require distinct adhesion complexes to form contacts with their neighbors or the extracellular matrix, and vinculin links these complexes to the actin cytoskeleton. Metavinculin, an isoform of vinculin that harbors a unique 68-residue insert in its tail domain, has distinct actin bundling and oligomerization properties and plays essential roles in muscle development and homeostasis. Moreover, patients with sporadic or familial mutations in the metavinculin-specific insert invariably develop fatal cardiomyopathies. Here we report the high resolution crystal structure of the metavinculin tail domain, as well as the crystal structures of full-length human native metavinculin (1,134 residues) and of the full-length cardiomyopathy-associated Ξ”Leu954 metavinculin deletion mutant. These structures reveal that an Ξ±-helix (H1β€²) and extended coil of the metavinculin insert replace Ξ±-helix H1 and its preceding extended coil found in the N-terminal region of the vinculin tail domain to form a new five-helix bundle tail domain. Further, biochemical analyses demonstrate that this helix replacement directs the distinct actin bundling and oligomerization properties of metavinculin. Finally, the cardiomyopathy associated Ξ”Leu954 and Arg975Trp metavinculin mutants reside on the replaced extended coil and the H1β€² Ξ±-helix, respectively. Thus, a helix replacement mechanism directs metavinculin's unique functions

    Vaccinia Virus Proteins A52 and B14 Share a Bcl-2–Like Fold but Have Evolved to Inhibit NF-ΞΊB rather than Apoptosis

    Get PDF
    Vaccinia virus (VACV), the prototype poxvirus, encodes numerous proteins that modulate the host response to infection. Two such proteins, B14 and A52, act inside infected cells to inhibit activation of NF-ΞΊB, thereby blocking the production of pro-inflammatory cytokines. We have solved the crystal structures of A52 and B14 at 1.9 Γ… and 2.7 Γ… resolution, respectively. Strikingly, both these proteins adopt a Bcl-2–like fold despite sharing no significant sequence similarity with other viral or cellular Bcl-2–like proteins. Unlike cellular and viral Bcl-2–like proteins described previously, A52 and B14 lack a surface groove for binding BH3 peptides from pro-apoptotic Bcl-2–like proteins and they do not modulate apoptosis. Structure-based phylogenetic analysis of 32 cellular and viral Bcl-2–like protein structures reveals that A52 and B14 are more closely related to each other and to VACV N1 and myxoma virus M11 than they are to other viral or cellular Bcl-2–like proteins. This suggests that a progenitor poxvirus acquired a gene encoding a Bcl-2–like protein and, over the course of evolution, gene duplication events have allowed the virus to exploit this Bcl-2 scaffold for interfering with distinct host signalling pathways

    The Cysteine-Rich Interdomain Region from the Highly Variable Plasmodium falciparum Erythrocyte Membrane Protein-1 Exhibits a Conserved Structure

    Get PDF
    Plasmodium falciparum malaria parasites, living in red blood cells, express proteins of the erythrocyte membrane protein-1 (PfEMP1) family on the red blood cell surface. The binding of PfEMP1 molecules to human cell surface receptors mediates the adherence of infected red blood cells to human tissues. The sequences of the 60 PfEMP1 genes in each parasite genome vary greatly from parasite to parasite, yet the variant PfEMP1 proteins maintain receptor binding. Almost all parasites isolated directly from patients bind the human CD36 receptor. Of the several kinds of highly polymorphic cysteine-rich interdomain region (CIDR) domains classified by sequence, only the CIDR1Ξ± domains bind CD36. Here we describe the CD36-binding portion of a CIDR1Ξ± domain, MC179, as a bundle of three Ξ±-helices that are connected by a loop and three additional helices. The MC179 structure, containing seven conserved cysteines and 10 conserved hydrophobic residues, predicts similar structures for the hundreds of CIDR sequences from the many genome sequences now known. Comparison of MC179 with the CIDR domains in the genome of the P. falciparum 3D7 strain provides insights into CIDR domain structure. The CIDR1Ξ± three-helix bundle exhibits less than 20% sequence identity with the three-helix bundles of Duffy-binding like (DBL) domains, but the two kinds of bundles are almost identical. Despite the enormous diversity of PfEMP1 sequences, the CIDR1Ξ± and DBL protein structures, taken together, predict that a PfEMP1 molecule is a polymer of three-helix bundles elaborated by a variety of connecting helices and loops. From the structures also comes the insight that DBL1Ξ± domains are approximately 100 residues larger and that CIDR1Ξ± domains are approximately 100 residues smaller than sequence alignments predict. This new understanding of PfEMP1 structure will allow the use of better-defined PfEMP1 domains for functional studies, for the design of candidate vaccines, and for understanding the molecular basis of cytoadherence

    Structural Insights into the Evolution of a Non-Biological Protein: Importance of Surface Residues in Protein Fold Optimization

    Get PDF
    Phylogenetic profiling of amino acid substitution patterns in proteins has led many to conclude that most structural information is carried by interior core residues that are solvent inaccessible. This conclusion is based on the observation that buried residues generally tolerate only conserved sequence changes, while surface residues allow more diverse chemical substitutions. This notion is now changing as it has become apparent that both core and surface residues play important roles in protein folding and stability. Unfortunately, the ability to identify specific mutations that will lead to enhanced stability remains a challenging problem. Here we discuss two mutations that emerged from an in vitro selection experiment designed to improve the folding stability of a non-biological ATP binding protein. These mutations alter two solvent accessible residues, and dramatically enhance the expression, solubility, thermal stability, and ligand binding affinity of the protein. The significance of both mutations was investigated individually and together, and the X-ray crystal structures of the parent sequence and double mutant protein were solved to a resolution limit of 2.8 and 1.65 Γ…, respectively. Comparative structural analysis of the evolved protein to proteins found in nature reveals that our non-biological protein evolved certain structural features shared by many thermophilic proteins. This experimental result suggests that protein fold optimization by in vitro selection offers a viable approach to generating stable variants of many naturally occurring proteins whose structures and functions are otherwise difficult to study
    • …
    corecore