2,838 research outputs found

    H2 reformation in post-shock regions

    Full text link
    H2 formation is an important process in post-shock regions, since H2 is an active participant in the cooling and shielding of the environment. The onset of H2 formation therefore has a strong effect on the temperature and chemical evolution in the post shock regions. We recently developed a model for H2 formation on a graphite surface in warm conditions. The graphite surface acts as a model system for grains containing large areas of polycyclic aromatic hydrocarbon structures. Here this model is used to obtain a new description of the H2 formation rate as a function of gas temperature that can be implemented in molecular shock models. The H2 formation rate is substantially higher at high gas temperatures as compared to the original implementation of this rate in shock models, because of the introduction of H atoms which are chemically bonded to the grain (chemisorption). Since H2 plays such a key role in the cooling, the increased rate is found to have a substantial effect on the predicted line fluxes of an important coolant in dissociative shocks [O I] at 63.2 and 145.5 micron. With the new model a better agreement between model and observations is obtained. Since one of the goals of Herschel/PACS will be to observe these lines with higher spatial resolution and sensitivity than the former observations by ISO-LWS, this more accurate model is very timely to help with the interpretation of these future results.Comment: 12 pages, 3 figures, 1 table, accepted in MNRAS Letter

    Effect of the Presence of Seagrass and Nutrients on Growth Rates of Farmed Kappaphycus alvarezii and Eucheuma denticulatum(Rhodophyta)

    Get PDF
    The effects of seagrass cover and nutrients on seaweed cultivation were examined in tidal pools in Tanzania. The seaweeds Eucheuma denticulatumand Kappaphycus alvareziiwere cultivated from August 2006 - August 2007 in pools with and without seagrasses, and with and without added nutrients. Growth rates of fertilised E. denticulatumwere significantly lower in the presence of seagrasses (P <0.05) but there were no significant differences (P >0.05) in the rest of the treatments. Monthly growth was lowest during the hotter months (December-February) and heavy rains (March-May), and highest during the cooler months (June-August)

    The ORGAN Experiment: An axion haloscope above 15 GHz

    Full text link
    We present first results and future plans for the Oscillating Resonant Group AxioN (ORGAN) experiment, a microwave cavity axion haloscope situated in Perth, Western Australia designed to probe for high mass axions motivated by several theoretical models. The first stage focuses around 26.6 GHz in order to directly test a claimed result, which suggests axions exist at the corresponding mass of 110 μ110~\mueV. Later stages will move to a wider scan range of 15-50 GHz (60210 μ60-210~\mu eV). We present the results of the pathfinding run, which sets a limit on gaγγg_{a\gamma\gamma} of 2.02×10122.02\times 10^{-12} eV1^{-1} at 26.531 GHz, or 110~μ\mueV, in a span of 2.5 neV (shaped by the Lorentzian resonance) with 90%90 \% confidence. Furthermore, we outline the current design and future strategies to eventually attain the sensitivity to search for well known axion models over the wider mass range.Comment: 15 pages, 5 figures. V2: As published in Physics of Dark Univers

    Comparison of two planning methods for heterogeneity correction in planning total body irradiation

    Get PDF
    Total body irradiation (TBI) is often used as part of the conditioning process prior to bone marrow transplants for diseases such as leukemia. By delivering radiation to the entire body, together with chemotherapy, tumour cells are killed and the patient is also immunosupressed. This reduces the risk of disease relapse and increases the chances of a successful implant respectively. TBI requires a large flat field of radiation to cover the entire body with a uniform dose. However, dose uniformity is a major challenge in TBI. (AAPM Report 17) The ICRU report 50 recommends that the dose range within the target volume remain in the range of -5% to +7%. Whilst it is generally accepted that this is not possible for TBI, it is normally clinically acceptable that ±10% of the prescribed dose to the whole body is sufficiently uniform, unless critical structures are being shielded. TBI involves complex dosimetry due to the large source to treatment axis distance (SAD), dose uniformity and flatness over the large field, bolus requirements, extra scatter from the bunker walls and floor and large field overshoot. There is also a lack of specialised treatment planning systems for TBI planning at extended SAD. TBI doses at Westmead Hospital are prescribed to midline. Corrections are made for variations in body contour and tissue density heterogeneity in the lungs using bolus material to increase dose uniformity along midline. Computed tomography (CT) data is imported into a treatment planning system. The CT gives information regarding tissue heterogeneity and patient contour. The treatment planning system uses this information to determine the dose distribution. Using the dose ratio between plans with and without heterogeneity correction the effective chest width can be calculated. The effective chest width is then used for calculating the treatment monitor units and bolus requirements. In this project the tissue heterogeneity corrections from two different treatment planning systems are compared for calculating the effective chest width. The treatment planning systems used were PinnacleTM, a 3D system that uses a convolution method to correct for tissue heterogeneity and calculate dose. The other system, RadplanTM, is a 2D algorithm that corrects for tissue heterogeneity using a modified Batho method and calculates dose using the Bentley - Milan Algorithm. Other possible differences between the treatment planning systems are also discussed. An anthropomorphic phantom was modified during this project. The chest slices were replaced with PerspexTM slices that had different sized cork and PerspexTM inserts to simulate different lung sizes. This allowed the effects of different lung size on the heterogeneity correction to be analysed. The phantom was CT scanned and the information used for the treatment plans. For each treatment planning system and each phantom plans were made with and without heterogeneity corrections. For each phantom the ratio between the plans from each system was used to calculate the effective chest width. The effective chest width was then used to calculate the number of monitor units to be delivered. The calculated dose per monitor unit at the extended TBI distance for the effective chest width from each planning system is then verified using thermoluminescent dosimeters (TLDs) in the unmodified phantom. The original phantom was used for the verification measurements as it had special slots for TLDs. The isodose distributions produced by each planning system are then verified using measurements from Kodak EDR2 radiographic film in the anthropomorphic phantom at isocentre. Further film measurements are made at the extended TBI treatment SAD. It was found that only the width of the lungs made any significant difference to the heterogeneity correction for each treatment planning system. The height and depth of the lungs will affect the dose at the calculation point from changes to the scattered radiation within the volume. However, since the dose from scattered radiation is only a fraction of that from the primary beam, the change in dose was not found to be significant. This is because the calculation point was positioned in the middle of the lungs, so the height and depth of the lungs didn't affect the dose at the calculation point. The dose per monitor unit calculated using the heterogeneity correction for each treatment planning system varied less than the accuracy of the TLD measurements. The isodose distributions measured by film showed reasonable agreement with those calculated by both treatment planning systems at isocentre and a more uniform distribution at the extended TBI treatment distance. The verification measurements showed that either treatment planning system could be used to calculate the heterogeneity correction and hence effective chest width for TBI treatment planning

    Multifluid, Magnetohydrodynamic Shock Waves with Grain Dynamics II. Dust and the Critical Speed for C Shocks

    Full text link
    This is the second in a series of papers on the effects of dust on multifluid, MHD shock waves in weakly ionized molecular gas. We investigate the influence of dust on the critical shock speed, v_crit, above which C shocks cease to exist. Chernoff showed that v_crit cannot exceed the grain magnetosound speed, v_gms, if dust grains are dynamically well coupled to the magnetic field. We present numerical simulations of steady shocks where the grains may be well- or poorly coupled to the field. We use a time-dependent, multifluid MHD code that models the plasma as a system of interacting fluids: neutral particles, ions, electrons, and various ``dust fluids'' comprised of grains with different sizes and charges. Our simulations include grain inertia and grain charge fluctuations but to highlight the essential physics we assume adiabatic flow, single-size grains, and neglect the effects of chemistry. We show that the existence of a phase speed v_phi does not necessarily mean that C shocks will form for all shock speeds v_s less than v_phi. When the grains are weakly coupled to the field, steady, adiabatic shocks resemble shocks with no dust: the transition to J type flow occurs at v_crit = 2.76 v_nA, where v_nA is the neutral Alfven speed, and steady shocks with v_s > 2.76 v_nA are J shocks with magnetic precursors in the ion-electron fluid. When the grains are strongly coupled to the field, v_crit = min(2.76 v_nA, v_gms). Shocks with v_crit < v_s < v_gms have magnetic precursors in the ion-electron-dust fluid. Shocks with v_s > v_gms have no magnetic precursor in any fluid. We present time-dependent calculations to study the formation of steady multifluid shocks. The dynamics differ qualitatively depending on whether or not the grains and field are well coupled.Comment: 43 pages with 17 figures, aastex, accepted by The Astrophysical Journa

    Does Alcohol Mediate the Relationship Between Sexual Victimization and Risk Perception in a Date Rape Vignette

    Get PDF
    The present study used a date-rape vignette to examine the relationship between prior victimization, drinking habits (AUDIT score), risk perception. This was part of a larger study that analyzed sexual victimization and aggression. The present study looked at the 913 college-aged women that self-identified as heterosexual and bisexual at 2 mid-western colleges. They completed a battery of surveys that identified relevant history and behaviors. Findings suggest that the problematic drinking variable (AUDIT) mediates the relationship between prior victimization and risk perception

    Does Alcohol Mediate the Relationship Between Sexual Victimization and Risk Perception in a Date Rape Vignette

    Get PDF
    The present study used a date-rape vignette to examine the relationship between prior victimization, drinking habits (AUDIT score), risk perception. This was part of a larger study that analyzed sexual victimization and aggression. The present study looked at the 913 college-aged women that self-identified as heterosexual and bisexual at 2 mid-western colleges. They completed a battery of surveys that identified relevant history and behaviors. Findings suggest that the problematic drinking variable (AUDIT) mediates the relationship between prior victimization and risk perception

    Complex Langevin Equation and the Many-Fermion Problem

    Get PDF
    We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where non-positive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ``sign problem''. While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in three examples ranging from simple one-dimensional integrals over quantum mechanical models to a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex

    Disentangling effective temperatures of individual eclipsing binary components by means of color-index constraining

    Full text link
    Eclipsing binary stars are gratifying objects because of their unique geometrical properties upon which all important physical parameters such as masses, radii, temperatures, luminosities and distance may be obtained in absolute scale. This poses strict demand on the model to be free of systematic effects that would influence the results later used for calibrations, catalogs and evolution theory. We present an objective scheme of obtaining individual temperatures of both binary system components by means of color-index constraining, with the only requirement that the observational data-set is acquired in a standard photometric system. We show that for a modest case of two similar main-sequence components the erroneous approach of assuming the temperature of the primary star from the color index yields temperatures which are systematically wrong by ~100K.Comment: 6 pages, 3 figures, 1 table; to appear in proceedings of the Close Binaries in the 21st Century conference in Syros, Greec
    corecore