56 research outputs found

    On-surface synthesis of a doubly anti-aromatic carbon allotrope

    Get PDF
    Synthetic carbon allotropes such as graphene, carbon nanotubes and fullerenes have revolutionized materials science and led to new technologies. Many hypothetical carbon allotropes have been discussed, but few have been studied experimentally. Recently, unconventional synthetic strategies such as dynamic covalent chemistry and on-surface synthesis have been used to create new forms of carbon, including γ-graphyne, fullerene polymers, biphenylene networks and cyclocarbons. Cyclo[N]carbons are molecular rings consisting of N carbon atoms; the three that have been reported to date (N = 10, 14 and 18) are doubly aromatic, which prompts the question: is it possible to prepare doubly anti-aromatic versions? Here we report the synthesis and characterization of an anti-aromatic carbon allotrope, cyclo[16]carbon, by using tip-induced on-surface chemistry. In addition to structural information from atomic force microscopy, we probed its electronic structure by recording orbital density maps with scanning tunnelling microscopy. The observation of bond-length alternation in cyclo[16]carbon confirms its double anti-aromaticity, in concordance with theory. The simple structure of C16 renders it an interesting model system for studying the limits of aromaticity, and its high reactivity makes it a promising precursor to novel carbon allotropes

    Challenges in optics for Extremely Large Telescope instrumentation

    Full text link
    We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the success of ELTs will heavily rely on its instrumentation and this, in turn, will depend on the ability to produce large and ultra-precise optical components like light-weight mirrors, aspheric lenses, segmented filters, and large gratings. New materials and manufacturing processes are currently under study, both at research institutes and in industry. In the present paper, we report on its progress with particular emphasize on volume-phase-holographic gratings, photochromic materials, sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces, and free-form optics. All are promising technologies opening new degrees of freedom to optical designers. New optronic-mechanical systems will enable efficient use of the very large focal planes. We also provide exploratory descriptions of "old" and "new" optical technologies together with suggestions to instrument designers to overcome some of the challenges placed by ELT instrumentation.Comment: (Proc. OPTICON Key Technology Network Workshop, Rome 20-21 October 2005

    MOONS: a Multi-Object Optical and Near-infrared Spectrograph for the VLT

    Full text link
    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of 1000 fibers deployable over a field of view of 500 square arcmin, the largest patrol field offered by the Nasmyth focus at the VLT. The total wavelength coverage is 0.8um-1.8um and two resolution modes: medium resolution and high resolution. In the medium resolution mode (R=4,000-6,000) the entire wavelength range 0.8um-1.8um is observed simultaneously, while the high resolution mode covers simultaneously three selected spectral regions: one around the CaII triplet (at R=8,000) to measure radial velocities, and two regions at R=20,000 one in the J-band and one in the H-band, for detailed measurements of chemical abundances. The grasp of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and wavelength coverage of MOONS - extending into the near-IR - will provide the observational power necessary to study galaxy formation and evolution over the entire history of the Universe, from our Milky Way, through the redshift desert and up to the epoch of re-ionization at z>8-9. At the same time, the high spectral resolution mode will allow astronomers to study chemical abundances of stars in our Galaxy, in particular in the highly obscured regions of the Bulge, and provide the necessary follow-up of the Gaia mission. Such characteristics and versatility make MOONS the long-awaited workhorse near-IR MOS for the VLT, which will perfectly complement optical spectroscopy performed by FLAMES and VIMOS.Comment: 9 pages, 5 figures. To appear in the proceedings of the SPIE Astronomical Instrumentation + Telescopes conference, Amsterdam, 201

    Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition

    Get PDF
    A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems

    Outcomes for children with acute myocarditis

    No full text

    Dimensional metrology of mirror segments for extremely large telescopes

    No full text
    Metrology is critical amongst the challenges associated with the production of mirror segments on the scale required by proposed extremely-large telescopes. To achieve the optical specification in a reasonable time requires measurements with an unprecedented combination of accuracy, stability and speed. This study suggests combining several promising methods for use at different stages of production. Pallet mounting is proposed to permit the segments to be handled without significant distortion and to provide fiducials for precise location of the segment. Final qualification of a segment would include comparison with a master reference that had been certified by consensus among a number of independent experts
    • …
    corecore