56 research outputs found
On-surface synthesis of a doubly anti-aromatic carbon allotrope
Synthetic carbon allotropes such as graphene, carbon nanotubes and fullerenes have revolutionized materials science and led to new technologies. Many hypothetical carbon allotropes have been discussed, but few have been studied experimentally. Recently, unconventional synthetic strategies such as dynamic covalent chemistry and on-surface synthesis have been used to create new forms of carbon, including γ-graphyne, fullerene polymers, biphenylene networks and cyclocarbons. Cyclo[N]carbons are molecular rings consisting of N carbon atoms; the three that have been reported to date (N = 10, 14 and 18) are doubly aromatic, which prompts the question: is it possible to prepare doubly anti-aromatic versions? Here we report the synthesis and characterization of an anti-aromatic carbon allotrope, cyclo[16]carbon, by using tip-induced on-surface chemistry. In addition to structural information from atomic force microscopy, we probed its electronic structure by recording orbital density maps with scanning tunnelling microscopy. The observation of bond-length alternation in cyclo[16]carbon confirms its double anti-aromaticity, in concordance with theory. The simple structure of C16 renders it an interesting model system for studying the limits of aromaticity, and its high reactivity makes it a promising precursor to novel carbon allotropes
Challenges in optics for Extremely Large Telescope instrumentation
We describe and summarize the optical challenges for future instrumentation
for Extremely Large Telescopes (ELTs). Knowing the complex instrumental
requirements is crucial for the successful design of 30-60m aperture
telescopes. After all, the success of ELTs will heavily rely on its
instrumentation and this, in turn, will depend on the ability to produce large
and ultra-precise optical components like light-weight mirrors, aspheric
lenses, segmented filters, and large gratings. New materials and manufacturing
processes are currently under study, both at research institutes and in
industry. In the present paper, we report on its progress with particular
emphasize on volume-phase-holographic gratings, photochromic materials,
sintered silicon-carbide mirrors, ion-beam figuring, ultra-precision surfaces,
and free-form optics. All are promising technologies opening new degrees of
freedom to optical designers. New optronic-mechanical systems will enable
efficient use of the very large focal planes. We also provide exploratory
descriptions of "old" and "new" optical technologies together with suggestions
to instrument designers to overcome some of the challenges placed by ELT
instrumentation.Comment: (Proc. OPTICON Key Technology Network Workshop, Rome 20-21 October
2005
MOONS: a Multi-Object Optical and Near-infrared Spectrograph for the VLT
MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared
Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A
study. The baseline design consists of 1000 fibers deployable over a field of
view of 500 square arcmin, the largest patrol field offered by the Nasmyth
focus at the VLT. The total wavelength coverage is 0.8um-1.8um and two
resolution modes: medium resolution and high resolution. In the medium
resolution mode (R=4,000-6,000) the entire wavelength range 0.8um-1.8um is
observed simultaneously, while the high resolution mode covers simultaneously
three selected spectral regions: one around the CaII triplet (at R=8,000) to
measure radial velocities, and two regions at R=20,000 one in the J-band and
one in the H-band, for detailed measurements of chemical abundances. The grasp
of the 8.2m Very Large Telescope (VLT) combined with the large multiplex and
wavelength coverage of MOONS - extending into the near-IR - will provide the
observational power necessary to study galaxy formation and evolution over the
entire history of the Universe, from our Milky Way, through the redshift desert
and up to the epoch of re-ionization at z>8-9. At the same time, the high
spectral resolution mode will allow astronomers to study chemical abundances of
stars in our Galaxy, in particular in the highly obscured regions of the Bulge,
and provide the necessary follow-up of the Gaia mission. Such characteristics
and versatility make MOONS the long-awaited workhorse near-IR MOS for the VLT,
which will perfectly complement optical spectroscopy performed by FLAMES and
VIMOS.Comment: 9 pages, 5 figures. To appear in the proceedings of the SPIE
Astronomical Instrumentation + Telescopes conference, Amsterdam, 201
Viral to metazoan marine plankton nucleotide sequences from the Tara Oceans expedition
A unique collection of oceanic samples was gathered by the Tara Oceans expeditions (2009-2013), targeting plankton organisms ranging from viruses to metazoans, and providing rich environmental context measurements. Thanks to recent advances in the field of genomics, extensive sequencing has been performed for a deep genomic analysis of this huge collection of samples. A strategy based on different approaches, such as metabarcoding, metagenomics, single-cell genomics and metatranscriptomics, has been chosen for analysis of size-fractionated plankton communities. Here, we provide detailed procedures applied for genomic data generation, from nucleic acids extraction to sequence production, and we describe registries of genomics datasets available at the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena). The association of these metadata to the experimental procedures applied for their generation will help the scientific community to access these data and facilitate their analysis. This paper complements other efforts to provide a full description of experiments and open science resources generated from the Tara Oceans project, further extending their value for the study of the world's planktonic ecosystems
Dimensional metrology of mirror segments for extremely large telescopes
Metrology is critical amongst the challenges associated with the production of mirror segments on the scale required by proposed extremely-large telescopes. To achieve the optical specification in a reasonable time requires measurements with an unprecedented combination of accuracy, stability and speed. This study suggests combining several promising methods for use at different stages of production. Pallet mounting is proposed to permit the segments to be handled without significant distortion and to provide fiducials for precise location of the segment. Final qualification of a segment would include comparison with a master reference that had been certified by consensus among a number of independent experts
- …