173 research outputs found

    New measuring techniques using holographic and speckle interferometric recording

    Get PDF
    Electronic and photographic interferometric recording, and their combination, result in several novel optical measuring techniques. The interferometric properties of holographic and speckle processes in these techniques encompass fields such as lapse time, real time and time average holographic interferometry, two-wavelength and multiple-index speckle contouring, figure (moire) interference, photographic bleach processes and electronic processing. Each of these fields is analysed and conclusions are drawn in their interaction with the proposed techniques. A clear and simple approach to optical wave theory is intended with emphasis in scalar wave theory. [Continues.

    Air change rates and infection risk in school environments: Monitoring naturally ventilated classrooms in a northern Italian urban context

    Get PDF
    The importance of building ventilation in avoiding long-distance airborne transmission has been highlighted with the advent of the COVID-19 pandemics. Among others, school environments, in particular classrooms, present criticalities in the implementation of ventilation strategies and their impact on indoor air quality and risk of contagion. In this work, three naturally ventilated school buildings located in northern Italy have undergone monitoring at the end of the heating season. Environmental parameters, such as CO2 concentration and indoor/outdoor air temperature, have been recorded together with the window opening configurations to develop a two-fold analysis: i) the estimation of real air change rates through the transient mass balance equation method, and ii) the individual infection risk via the Wells-Riley equation. A strong statistical correlation has been found between the air change rates and the windows opening configuration by means of a window-to-volume ratio between the total opening area and the volume of the classroom, which has been used to estimate the individual infection risk. Results show that the European Standard recommendation for air renewal could be achieved by a window opening area of at least 1.5 m2, in the most prevailing Italian classrooms. Furthermore, scenarios in which the infector agent is a teacher show higher individual infection risk than those in which the infector is a student. In addition, the outcomes serve school staff as a reference to ensure adequate ventilation in classrooms and keep the risk of infection under control based on the number of the students and the volume of the classroom

    Increased Glycemic Variability Is Independently Associated With Length of Stay and Mortality in Noncritically Ill Hospitalized Patients

    Get PDF
    OBJECTIVE To investigate the association between glycemic variability (GV) and both length of stay (LOS) and 90-day mortality in noncritically ill hospitalized patients. RESEARCH DESIGN AND METHODS This study retrospectively analyzed 4,262 admissions to the general medicine or surgery services during a 2 year period. Patients with point-of-care glucose monitoring and a minimum of two glucose values per day on average were selected. GV was assessed by SD and coefficient of variation (CV). Data were analyzed with linear and logistic multivariate regression analysis in separate models for SD and CV. Analysis was performed with generalized estimating equations to adjust for correlation between multiple admissions in some individual cases. RESULTS After exclusions, 935 admissions comprised the sample. Results of adjusted analysis indicate that for every 10 mg/dL increase in SD and 10–percentage point increase in CV, LOS increased by 4.4 and 9.7%, respectively. Relative risk of death in 90 days also increased by 8% for every 10-mg/dL increase in SD. These associations were independent of age, race, service of care (medicine or surgery), previous diagnosis of diabetes, HbA1c, BMI, the use of regular insulin as a sole regimen, mean glucose, and hypoglycemia occurrence during the hospitalization. CONCLUSIONS Our results indicate that increased GV during hospitalization is independently associated with longer LOS and increased mortality in noncritically ill patients. Prospective studies with continuous glucose monitoring are necessary to investigate this association thoroughly and to generate therapeutic strategies targeted at decreasing GV. Inpatient hyperglycemia is common, and it has been associated with increased morbidity and mortality in patients with and without diabetes (1–7). In the intensive care unit (ICU) setting, hypoglycemia has also been independently associated with a significant increase in mortality (8–10). Recently, a third metric of glucose control, known as glycemic variability (GV), has been proposed to be additionally implicated in the disease-associated process of dysglycemia (11). GV refers to fluctuations of blood glucose values around the mean and has been posited as a novel marker for poor glycemic control (12,13). In vitro and human studies suggest that high GV leads to greater oxidative stress than does sustained hyperglycemia (14,15). Studies of ICU patients have consistently demonstrated that increased GV is independently associated with higher mortality (16–19). Notably, results from a large multicenter study concluded that GV was a stronger predictor of ICU mortality than was mean glucose concentrations (20). Although there is no consensus as to the best method to determine GV in hospitalized patients, the use of SD of glucose values has been well validated by previous ICU studies (16,20). Coefficient of variation (CV) has also been suggested as a strong independent index for measuring GV because it corrects for mean glucose levels (21,22). Despite substantial scientific evidence from the ICU, no previous studies have investigated the association between GV and clinical outcomes in patients admitted to the general medical and surgical wards. The purpose of this study was therefore to investigate the association between GV and length of stay (LOS) and 90-day mortality in noncritically ill hospitalized patients. We hypothesize that increased GV in this setting is associated with increased LOS and mortality

    The effects of baseline characteristics, glycaemia treatment approach, and glycated haemoglobin concentration on the risk of severe hypoglycaemia: post hoc epidemiological analysis of the ACCORD study

    Get PDF
    Objectives To investigate potential determinants of severe hypoglycaemia, including baseline characteristics, in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial and the association of severe hypoglycaemia with levels of glycated haemoglobin (haemoglobin A1C) achieved during therapy

    Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity

    Get PDF
    Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans (AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and contribute to risk; yet published studies identifying expression quantitative trait loci (eQTLs) in African ancestry populations are restricted to blood cells. This study aims to develop a map of genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related metabolic phenotypes were evaluated by mining GWAS datasets. eQTL analysis identified 1,971 and 2,078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including top cis-eGenes CHURC1, USMG5, and ERAP2, were identified in both tissues. 62.1% of top cis-eSNPs were within ±50kb of transcription start sites and cis-eGenes were enriched for mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes, (e.g. INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://mdsetaa.phs.wakehealth.edu) and identified genetically-regulated transcripts for delineating genetic causes of T2D, and related metabolic phenotypes

    Deletion of the BDNF Truncated Receptor TrkB.T1 Delays Disease Onset in a Mouse Model of Amyotrophic Lateral Sclerosis

    Get PDF
    Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1G93A ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders

    Minireview Current Approaches for Absorption, Distribution, Metabolism, and Excretion Characterization of Antibody-Drug Conjugates: An Industry White Paper

    Get PDF
    ABSTRACT An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs
    corecore