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Abstract

Relative to European Americans, type 2 diabetes (T2D) is more prevalent in African Americans 

(AAs). Genetic variation may modulate transcript abundance in insulin-responsive tissues and 

contribute to risk; yet published studies identifying expression quantitative trait loci (eQTLs) in 

African ancestry populations are restricted to blood cells. This study aims to develop a map of 

genetically regulated transcripts expressed in tissues important for glucose homeostasis in AAs, 

critical for identifying the genetic etiology of T2D and related traits. Quantitative measures of 

adipose and muscle gene expression, and genotypic data were integrated in 260 non-diabetic AAs 

to identify expression regulatory variants. Their roles in genetic susceptibility to T2D, and related 

metabolic phenotypes were evaluated by mining GWAS datasets. eQTL analysis identified 1,971 

and 2,078 cis-eGenes in adipose and muscle, respectively. Cis-eQTLs for 885 transcripts including 

top cis-eGenes CHURC1, USMG5, and ERAP2, were identified in both tissues. 62.1% of top cis-

eSNPs were within ±50kb of transcription start sites and cis-eGenes were enriched for 

mitochondrial transcripts. Mining GWAS databases revealed association of cis-eSNPs for more 
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than 50 genes with T2D (e.g. PIK3C2A, RBMS1, UFSP1), gluco-metabolic phenotypes, (e.g. 

INPP5E, SNX17, ERAP2, FN3KRP), and obesity (e.g. POMC, CPEB4). Integration of GWAS 

meta-analysis data from AA cohorts revealed the most significant association for cis-eSNPs of 

ATP5SL and MCCC1 genes, with T2D and BMI, respectively. This study developed the first 

comprehensive map of adipose and muscle tissue eQTLs in AAs (publically accessible at https://

mdsetaa.phs.wakehealth.edu) and identified genetically-regulated transcripts for delineating 

genetic causes of T2D, and related metabolic phenotypes.

Keywords

Expression Quantitative Trait (eQTL); Genotype; Transcript; Single nucleotide polymorphism 
(SNP); Adipose; Muscle; African American; Genomics; Diabetes; Obesity

 INTRODUCTION

The importance of genetic factors in modulating the susceptibility to type 2 diabetes (T2D) 

is well established (Groop and Pociot, 2014). Relative to European Americans, T2D is twice 

as prevalent in African Americans (Cowie et al., 2010) and associated risk factors such as 

insulin resistance and obesity are more prevalent (Cowie et al., 1993). Whether genetic 

variation modulates molecular processes and contributes to the enhanced susceptibility to 

T2D in African Americans is unknown. Large-scale linkage, candidate-gene, and genome-

wide association studies (GWAS), primarily in European and Asian populations, have 

identified approximately 88 loci associated with T2D and 83 loci associated with glucose 

homoeostasis-related phenotypes (Mohlke and Boehnke, 2015). T2D-associated loci 

identified in GWAS reveal relatively weak effects, together explaining only a small fraction 

of the heritability in African Americans (Mahajan et al., 2014;Ng et al., 2014). Moreover, 

most associated variants are located in noncoding genomic regions. Thus, determining how 

these loci modulate systemic glucose homeostasis at the molecular level remains unclear. 

Approaches investigating molecular endophenotypes more proximal to gene products may 

assist in identifying the molecular basis of genetic susceptibility to T2D in African 

Americans.

Genetic variation can impact transcript abundance. We and others reported that T2D- and 

related trait-associated variants are enriched for expression-regulatory single nucleotide 

polymorphisms (eSNPs) in tissues important for glucose homeostasis (Das and Sharma, 

2014;GTEx consortium, 2015;Nicolae et al., 2010). Identifying genetic variants associated 

with transcript expression in metabolically relevant tissues may identify functionally 

meaningful sets of SNPs involved in T2D, obesity, and related metabolic phenotypes. 

However, studies on the genetics of gene expression in populations of African ancestry are 

predominantly limited to lymphocytes/lymphoblastoid cell lines (Storey et al., 2007;Stranger 

et al., 2012;Zhang et al., 2008). The goal of this study was to identify genetic regulatory 

variants modulating expression of adipose and muscle transcripts in African Americans at 

risk for T2D and evaluate their role in susceptibility to T2D, obesity, and related metabolic 

disorders. A systematic analysis was performed on the genome-wide transcript expression 

profiles of insulin responsive tissues (subcutaneous adipose and skeletal muscle) and 
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genome-wide SNP genotypes in a metabolically characterized cohort of 260 non-diabetic 

African Americans from North Carolina. To our knowledge, this is the largest existing 

cohort of non-diabetic African Americans characterized for gluco-metabolic phenotypes 

with available biological samples (DNA and tissue) for conducting an integrative multi-

omics approach. These data were used to test two hypotheses: 1) expression levels of a 

subset of transcripts would associate with genotype and manifest as expression quantitative 

trait loci (eQTL) in both adipose and muscle, while a subset of transcripts would be 

modulated by tissue-specific eQTLs; and 2) a subset of the expression regulatory SNPs 

(eSNPs) would associate with glucose homeostasis related phenotypes, obesity and/or T2D 

in large GWAS, identifying putative causal SNPs in African Americans.

 MATERIALS AND METHODS

 Human subjects

Participants were healthy, self-reported African Americans residing in North Carolina aged 

18–60 years with a body mass index (BMI) between 18 and 42 kg/m2. A total of 260 

unrelated non-diabetic individuals completed all study visits and are referred to as the 

“African American Genetics of Metabolism and Expression” (AAGMEx) cohort; 

subcutaneous adipose tissue (from the abdomen near the umbilicus) and skeletal muscle 

(from the vastus lateralis) biopsies were collected from 256 individuals. Studies were 

performed at the Wake Forest School of Medicine (WFSM) Clinical Research Unit. This 

study was approved by the WFSM Institutional Review Board and all participants provided 

written informed consent.

A standard 75-g oral glucose tolerance test (OGTT) was used to exclude individuals with 

diabetes and results were analyzed by homeostatic model assessment (HOMA; http://

mmatsuda.diabetes-smc.jp/MIndex.html) to evaluate insulin sensitivity (Matsuda Index) and 

insulin resistance (HOMA-IR) (Matsuda and DeFronzo, 1999; Matthews et al., 1985). High 

quality insulin modified (0.03 U/kg) frequently sampled intravenous glucose tolerance test 

(FSIGT) data were available in 235 participants. The MINMOD Millennium program was 

used to analyze FSIGT data to determine insulin sensitivity (SI) and acute insulin response 

(AIRG) (Bergman et al., 2014). Clinical, anthropometric, and physiological characteristics of 

the AAGMEx cohort have been described (Sharma et al., 2016).

 Gene expression analysis and genotyping

Genome-wide expression data were generated using HumanHT-12 v4 Expression BeadChip 

(Illumina, San Diego, CA) whole genome gene expression arrays for quantitative analyses of 

transcript expression in adipose and muscle samples. Infinium HumanOmni5Exome-4 v1.1 

DNA Analysis BeadChips (Illumina) were used to genotype DNA samples based on the 

manufacturer’s recommendations. Additional technical details of standard gene expression 

analyses and genotyping methods are described in Supplementary methods.

 Quality control

Detailed data quality control methods are presented in Supplementary methods. In brief, 

measures of glucose homeostasis and obesity were examined for outliers in a univariate 
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fashion and as correlated pairs. Genome-wide gene expression data (probe level) for both the 

adipose and muscle samples were extracted separately using Illumina GenomeStudio 

V2011.1. Expression level was log2 transformed, robust multi-array average normalized 

(RMA, includes quantile normalization) (Irizarry et al., 2003) and batch-corrected using 

ComBat (Johnson et al., 2007). The HumanHT-12 v4 Expression BeadChip includes 47,231 

probes annotated to transcripts. Significant expression (p<0.05) of 16,010 and 13,118 

transcript probes was observed in adipose and muscle RNA, respectively, in 90% of 

participants. Data from these probes were primarily used for analysis. Probes were further 

filtered out based on bioinformatic criteria described in the supplementary methods. 

Genotype data were examined to verify sample and SNP quality. Genotype assays of 

4,210,443 SNPs passed technical quality filters. The genotype of 2,296,925 autosomal SNP 

assays (representing 2,210,735 unique high-quality genotyped SNPs with MAF>0.01 and 

HWE-p value >1×10−6) was used in eQTL analysis.

 Statistical and Bioinformatic analyses

To identify expression quantitative trait loci (eQTLs), linear regression was computed with 

the log2 transformed expression values as the outcome and an additive genetic model for the 

SNP as implemented in the R-package MatrixEQTL (Shabalin, 2012); age, gender, and 

African ancestry proportion were covariates. Analyses scanned for both cis and trans eQTLs, 

but partitioned the overall type 1 error rate of α=0.05 into α=0.04 for cis and α=0.01 for 

trans. However, we considered as significant any cis- and trans-eSNPs with a false discovery 

rate (FDR)-corrected p-value (Q-value) <0.01 (or 1.0%). Detailed statistical and 

bioinformatic data analysis methods are presented in Supplementary methods. Sample sizes 

in each analysis (Supplementary Table 1) varied based on available data after quality control.

 Replication of eQTL data

Adipose cis-eQTL data from the Multiple Tissue Human Expression Resource (MuTHER) 

project (Grundberg et al., 2012) and muscle cis-eQTL data reported by Keildson et al. 
(Keildson et al., 2014) were mined to replicate cis-eGenes identified in the AAGMEx cohort 

(Supplementary Methods). Additionally, replication of adipose and muscle cis-eGenes was 

tested in publically available tissue eQTL data from GTEx project (GTEx_Analysis_v6 

updated) and lymphoblastoid cell line (LCL) eQTL data from both the Geuvadis RNA 

sequencing project and the SeeQTL data depository.

 Integration of GWAS data

Cis-eSNPs identified in adipose and muscle of African Americans represented a prioritized 

set of SNPs providing statistical evidence for genotype-dependent variation in transcript 

abundance. The NHGRI Catalog of Published GWAS (Hindorff et al., 2009) and meta-

analysis data from the Meta-Analyses of Glucose and Insulin-related traits Consortium 

(MAGIC) (Scott et al., 2012) were mined to identify the role of putatively functional SNPs 

in T2D susceptibility and gluco-metabolic phenotypes. We also searched for associations of 

eSNPs with T2D and BMI in the Meta-analysis of Type 2 Diabetes in African Americans 

(MEDIA) Consortium (Ng et al., 2014) and African Ancestry Anthropometry Genetic 

Consortium (AAAGC) (Monda et al., 2013) GWAS (Supplementary Methods).
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 RESULTS

 eQTLs identified in adipose and muscle

We identified 1971 and 2078 transcripts with at least one significant cis-eQTL (top eSNP 

within ±500kb around the expressed transcript at FDR <0.01) in adipose and muscle, 

respectively (Figure 1A, 1B, Supplementary Tables 2 and 3). These transcripts were 

considered cis-eGenes.

Overlap between cis-eGenes was identified in adipose and muscle. Cis-eQTLs for 885 

transcripts were identified in both insulin-responsive tissues (Figure 1B). Among these, 317 

were most strongly associated with the same cis-eSNPs in both tissues and showed the same 

direction of effect (Figure 1C and Supplementary Table 4). The most significant cis-eGenes 

(FDR <1×10−100) observed in both tissues included churchill domain containing 1 

(CHURC1), up-regulated during skeletal muscle growth-homolog 5 (USMG5), and 

endoplasmic reticulum aminopeptidase 2 (ERAP2) (Table 1).

SNP–transcript expression-level associations for variants located on other chromosomes or 

outside the defined cis boundary (±500kb around the transcript) were examined to identify 

trans-regulatory variants. Associations were identified (FDR<0.01) for expression of 603 

and 943 transcripts with a genotype of at least one trans-eSNP in adipose and muscle, 

respectively (data not shown). Considering the large number of tests performed to identify 

trans-eQTLs, we conservatively considered a transcript associated with >1 trans-eSNP as 

statistically significant. Using this conservative criterion, 322 and 591 trans-eGenes were 

identified in adipose and muscle, respectively. Overlap of these trans-eGenes with cis-

eGenes is shown in Figure 1B. Summary statistics of all cis- and trans-eSNPs is publically 

accessible through a searchable database at https://mdsetaa.phs.wakehealth.edu.

 Genomic distribution of cis-eSNPs

The distribution of the top cis-eSNPs for each transcript was assessed in relation to gene 

proximity and plotted against the distribution of distances between cis-eSNPs with the 

lowest p-values and transcription start site (TSS). As reported (Stranger et al., 2005;Stranger 

et al., 2007;Veyrieras et al., 2008), the majority of top cis-eSNPs in adipose (62.6%) and 

muscle (61.7%) were located within ±50kb of the TSS (Figure 2A and 2B). For adipose, 

80% and 95% of the top cis-eSNPs were within 118.6 kb and 374.4 kb, respectively, of the 

TSS. For muscle, these distances were 122.8 kb and 371.4 kb, respectively. Cis-eSNPs with 

larger effect sizes were also overrepresented close to TSS (Figure 2C and 2D). Greater than 

80% (80.8% in adipose; 84% in muscle) of the highly significant cis-eSNPs (P-value 

<1×10−10) were located within ±100 kb of the TSS. To assess potential functional 

significance, we annotated the genomic locations (based on the Sequence Ontology 

definitions) of the top cis-eSNPs of associated transcripts (FDR<0.01). Interestingly, 79.6% 

of the top cis-eSNPs were located within or near gene regions (±5 kb), and only 20.4% were 

intergenic. Most of the top cis-eSNPs were intronic (43.1%) or in the 3’ or 5’ untranslated 

regions (UTR, 16.3%, Figure 3). Utilizing the TRANSFAC Database, SNPnexus (Dayem 

Ullah et al., 2012) annotation predicted the disruption of transcription factor binding sites by 

80 and 77 top cis-eSNPs in adipose and muscle, respectively.
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 In silico analyses indicate functional significance of cis-eGenes

Gene-annotation enrichment analysis with DAVID (Huang et al., 2009) indicated an 

enrichment of mitochondrial genes (GO:0005739) among cis-eGenes in both adipose 

(p=4.67×10−11, 141 transcripts) and muscle (p=4.84×10−30, 235 transcripts). Although not 

strongly enriched, cis-eGenes in both adipose (34 genes, p=0.03, FDR=26.5%) and muscle 

(47 genes, p=0.0079, FDR= 7.8%) included genes involved in diabetes based on Reactome 

pathway annotation (Reactome pathway, REACT_15380: Diabetes pathways). IPA predicted 

HNF4A (a transcription factor) as the most common upstream regulatory factor for adipose 

(p-value of overlap=2.23×10−15, 254 transcripts) and muscle (p=3.82×10−22 , 288 genes) 

cis-eGenes identified. Expression of a subset of cis-eGenes (362 in adipose; 42 in muscle) 

was associated with SI in this non-diabetic African American cohort (Sharma et al., 2016).

 Replication of cis-eQTLs using publically available data

Published studies for eQTLs in insulin-responsive tissues in African Americans are not 

available. Replication of eQTLs was assessed by mining published adipose and muscle 

eQTLs in Caucasians (populations of European ancestry). Adipose eQTL data from 

MuTHER (Grundberg et al., 2012) were assessed for replication of 190 top cis-eGenes 

identified in AAGMEx (included probes for 100 top cis-eGenes and 100 top SI-associated 

cis-eGenes). Information for 155 of the 190 selected probes was available in MuTHER. 

Comparison of data sets showed an association of 114 cis-eGenes (probes) with the same 

cis-eSNPs in both studies (Supplementary Table 5), supporting replication of 73.5% of top 

adipose cis-eQTLs in our AAGMEx cohort.

Muscle cis-eQTLs as reported by Keildson et al. (Keildson et al., 2014), were searched to 

assess replication of these cis-eGenes (n=287) in the AAGMEx cohort, considering all 

probes representing significant (up to FDR <0.04) cis-eGenes. Comparison of the two 

muscle-eQTL data sets showed an association of 144 cis-eGenes (represented by 191 

probes, Supplementary Table 6). Despite the small sample and different design of the 

previous study by Keildson et al., 50.2% of their muscle-eGenes were replicated in our 

AAGMEx African American cohort. Despite different methods of transcript quantification 

(RNA-seq) and sample characteristics (N=298 and 361 cadaver donors for subcutaneous 

adipose and skeletal muscle, respectively), results from GTEx (GTEx_Analysis_v6 updated: 

2015-06-18, dbGaP Accession phs000424.v6.p1) (GTEx consortium, 2015) supported 

replication of 965 adipose cis-eGenes and 1016 muscle cis-eGenes from AAGMEx (data not 

shown).

To determine the replication of adipose and muscle tissue cis-eGenes in surrogate tissues, 

publically available eQTL data for transformed lymphoblastoid cell lines (LCL) were 

searched. The LCL-eQTL data from a small African ancestry cohort (Geuvadis RNA 

sequencing project of 1000 Genomes YRI samples, N= 89; http://www.geuvadis.org/web/

geuvadis/RNAseq-project), replicated 96 and 95 adipose and muscle tissue-identified cis-

eGenes, respectively. However, replication was much higher when larger LCL-eQTL 

datasets, e.g. HapMap3 consensus cis-eQTL (SeeQTL; http://www.bios.unc.edu/research/

genomic_software/seeQTL) were searched for comparison. Considering cis-eGenes at 

q<0.01 from SeeQTL data, ~24% of AAGMEx adipose and muscle cis-eGenes (448 in 
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adipose; 443 in muscle) were replicated in LCLs. Thus, expression of a subset of transcripts 

is genetically regulated across tissues, and the eQTL data from LCLs may be used as a 

proxy for identifying a small subset of adipose and muscle tissue cis-eGenes.

 Association of cis-eSNPs with T2D, obesity and related metabolic phenotypes

The NHGRI Catalog of Published GWAS (from UCSC table browser) was mined (Hindorff 

et al., 2009) for association of all significant cis-eSNPs (FDR<0.01) for adipose and muscle 

transcripts to identify potential roles in T2D susceptibility and related phenotypes. This 

catalog only includes phenotype-associated index SNPs (p-values <1.0×10−5), mostly from 

people not of recent African descent. Association of cis-eSNPs was detected for >50 genes 

with gluco-metabolic phenotypes including T2D (e.g. PIK3C2A, RBMS1, UFSP1, ACHE), 

fasting plasma glucose (e.g. NOSTRIN, RREB1), hemoglobin A1c (e.g. FN3KRP), and 

BMI and obesity-related traits (e.g. POMC, MARCH6, NINJ1, RBP1, HMBOX1, 
CHURC1, CPEB4; Supplementary Table 7).

GWAS data from Caucasians in the MAGIC cohort (Scott et al., 2012) were assessed for 

glucose homeostasis phenotypes; Supplementary Table 8 lists cis-eSNPs for 54 adipose and 

63 muscle genes with evidence for association (p<0.01) with glucose homeostasis 

phenotypes. An eSNP (both adipose and muscle) for inositol polyphosphate-5-phosphatase 

(INPP5E) was strongly associated with fasting glucose (rs1128905, p=5.81×10−9), and an 

eSNP for ERAP2 was strongly associated with 2h-glucose (rs1019503, p=8.97×10−9 ). 

Interestingly, rs560887, located in the intron of the glucose-6-phosphatase catalytic subunit 

2 gene (G6PC2) was strongly associated with fasting glucose (p=1.4×10−178) in Caucasians 

in the MAGIC cohort, as was a cis-eSNP for NOSTRIN (nitric oxide synthase trafficker 

gene) in adipose of people in the AAGMEx cohort. Muscle eSNPs rs2068834 (sorting nexin 

17 gene, SNX17; p=9.78×10−20) and rs11715915 (macrophage stimulating 1 gene, MST1; 

p=4.90×10−8) associated with fasting glucose; eSNP rs6912327 (UHRF1 binding protein 1 

gene, UHRF1BP1) associated with BMI-adjusted fasting insulin (p=2.26×10−8).

A search for association of eSNPs (FDR <0.01) with T2D and BMI was performed in 

GWAS from MEDIA (Ng et al., 2014) and AAAGC (Monda et al., 2013). Cis-eSNPs for 72 

genes in adipose and 80 genes in muscle showed nominal evidence (p<0.01) of association 

with T2D in African Americans in the MEDIA cohort (Supplementary Table 9). Three cis-

eSNPs show stronger association (p<1.0×10−4) with T2D (Table-2A). A cis-eSNP for the 

transcript of ATP synthase subunit s-like protein (ATP5SL) gene was most significantly 

associated with T2D (rs7259208, p=1.20×10−5). Cis-eSNPs for 65 genes in adipose and 91 

genes in muscle showed nominal evidence of association (p<0.01) with BMI in African 

Americans in the AAAGC cohort (Supplementary Table 10). Four cis-eSNPs show stronger 

association (p<1.0×10−4) with BMI (Table-2B). Among the selected subset of cis-eSNPs, 

rs4074110 (methylcrotonoyl-CoA carboxylase 1, MCCC1) showed the most significant 

association with BMI (p=6.11×10−6) in meta-analyses from AAAGC data. Thus, cis-eSNPs 

may modulate the risk for T2D and obesity in African Americans.

Integration of AAGMEx eQTL results and GWAS of gluco-metabolic traits suggested 

putative target genes for GWAS-identified SNPs. A total of 216 and 249 target cis-eGenes in 

adipose and muscle, respectively, were identified. Among these target cis-eGenes, mRNA 
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expression of 55 genes in adipose, and 20 genes in muscle were significantly associated 

(p<0.001) with the glucose homeostasis traits (SI and AIRG derived from FSIGT; HOMA-IR 

and Matsuda index derived from OGTT), or obesity (BMI) phenotypes of AAGMEx 

participants (Supplementary Table 11).

 DISCUSSION

Despite successes in GWAS, the majority of loci accounting for T2D heritability remain 

unknown and the diversity of its pathophysiology, molecular mechanisms, and variants 

explaining enhanced susceptibility in African Americans are poorly understood. The present 

study combined gene expression in tissues important to insulin action, and genome-wide 

genotype data in African Americans to fill these gaps. Results provide a comprehensive map 

of genetically regulated transcripts in African Americans, which is critical for prioritizing 

GWAS-identified SNPs in replication studies and detecting functional roles of variants 

involved in T2D and related traits.

Integration of genome-wide expression and genotype data enabled mapping of loci involved 

in the regulation of gene expression. Association of SNPs with transcript levels of nearby 

(cis) or distal (trans) genes were identified. Compared to adipose, slightly more cis-eQTL-

transcripts (cis-eGenes) were found in muscle. Overlap of 885 cis-eQTL transcripts (~45% 

of cis-eGenes) was seen in both tissues indicating tissue- independent expression regulatory 

elements. Significant cis-eGenes observed in both tissues included USMG5 and ERAP2. 

The USMG5 gene, also known as the diabetes-associated protein in insulin-sensitive tissue 

gene (DAPIT), is differentially modulated in insulin-responsive tissues of streptozotocin-

treated diabetic rats (Kontro et al., 2012; Paivarinne and Kainulainen, 2001). ERAP2 is 

involved in maturation of many proteins in the endoplasmic reticulum (ER), and has been 

implicated in regulation of angiogenesis and blood pressure (Cifaldi et al., 2012). An eSNP 

for ERAP2 was strongly associated with 2h-glucose in the MAGIC cohort. Consistent with 

published eQTL studies (Stranger et al., 2005; Stranger et al., 2007; Veyrieras et al., 2008), 

top cis-eSNPs for 60% of transcripts in both tissues were within ±50 kb of the TSS. The 

genomic distribution of cis-eSNPs fits with existing knowledge on the genetic regulatory 

architecture of transcript expression. Further bioinformatic annotation of these loci indicated 

the disruption of transcription factor binding by eSNPs and provided evidence for regulatory 

motifs. Thus, the identified eQTLs support the concept that functional regulatory genomic 

regions exist in glucose homeostasis-regulating tissues. Many cis-eQTLs identified in this 

African American cohort were replicated in non-African cohorts. Thus, a subset of genetic 

regulatory mechanisms of transcript expression is common between African Americans and 

non-Africans. Further studies will be required to confirm, whether other subsets of genetic 

regulatory mechanisms of transcript expression predominately influence particular ancestral 

groups.

Enrichment (DAVID analysis) of mitochondrial genes was identified among adipose and 

muscle cis-eGenes, indicating a role for genetic factors in modulation of this pathway. IPA 

revealed enrichment of pathways involved in mitigating oxidative stress (including 

glutathione-mediated detoxification, p=8.32×10−3–3.72×10−5; NRF2-mediated oxidative 
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stress response, p=0.02-4.47×10−4) among cis-eGenes. These biological pathways may play 

key roles in modulating insulin sensitivity in African Americans.

Compared to cis-eQTLs, the effect sizes of trans-eQTLs are generally small, requiring larger 

sample sizes for robust detection of trans-eQTLs (Grundberg et al., 2012). A recent eQTL 

analysis in adipose tissue from Caucasian female twins (MuTHER Project, N=856) 

identified 3,529 cis-eQTLs (at FDR 1%) and 639 trans-eQTLs (at FDR 10%) (Grundberg et 

al., 2012). A stringent threshold (FDR<1%, with corresponding uncorrected p-values 

<2.6×10−9 in adipose tissue) was used to account for the large number of tests performed for 

trans-eQTL analysis in the AAGMEx cohort, and it identified 322 and 591 trans-eGenes in 

adipose and muscle, respectively. Thus, the number of trans-eGenes identified in AAGMEx 

is consistent with expectations and comparable to published studies on adipose and other 

tissues.

Mining of the NHGRI catalogue of GWAS (Hindorff et al., 2009) and MAGIC GWAS meta-

analysis (Scott et al., 2012) results revealed association of cis-eSNPs in this study with T2D 

and related phenotypes. Although these SNP-disease association results are primarily from 

cohorts of individuals not of African descent, integration of eQTL data from our African 

American participants suggests molecular mechanisms that are putatively regulated by these 

SNPs and sequentially modulating disease susceptibility.

Cis-eSNPs for many adipose and muscle transcripts showed association with T2D and BMI 

in MEDIA (Ng et al., 2014) and AAAGC (Monda et al., 2013) African Americans, 

supporting roles for these transcripts in T2D. Genes modulated by disease-associated cis-

eSNPs (e.g., CD36, CAMK2A, IRS2, POMC, TLR4, XBP1) are involved in the 

pathophysiology of T2D, obesity and related traits; whereas the roles of other cis-eGenes 

(e.g. ADAL, ATP5SL, MCCC1) are unknown. Interestingly, among the target cis-eGenes for 

these GWAS-identified SNPs, mRNA expression of 55 genes in adipose, and 20 genes in 

muscle was significantly associated with glucose homeostasis or obesity phenotypes in 

AAGMEx African Americans. This observation suggests a putative role for these GWAS-

identified SNPs and respective cis-eGenes in the pathophysiology of T2D and related 

metabolic diseases. Association summary statistics were available from the MEDIA and 

AAAGC cohorts for directly genotyped SNPs and HapMap reference panel imputed SNPs. 

Association results for a subset of cis-eSNPs or their proxies (those that were not among the 

HapMap SNPs) were not available from these GWAS. Thus, the role of cis-eSNPs of several 

transcripts identified in this study cannot be evaluated in the MEDIA and AAAGC cohorts.

Target cis-eGenes of T2D-associated SNPs from MEDIA African Americans overlapped 

with target cis-eGenes of glucose homeostasis trait-associated SNPs from MAGIC 

Caucasians. Cis-eSNPs for 18 genes (ACAD10, CUL3, G3BP2, GIN1, HLA-DPA1, HLA-
DPB1, HSPA1B, KCTD10, NOTCH4, PFDN1, PPM1M, RNF41, SNX17, ST7L, 
STARD10, TIPARP, TMEM116, and WDR6) were associated with T2D in MEDIA African 

Americans and were also associated with glucose homeostasis phenotypes (e.g., fasting 

glucose, 2h-OGTT glucose and fasting insulin) in Caucasians from MAGIC. Similarly, 

target cis-eGenes of BMI-associated SNPs from AAAGC African Americans overlapped 

with target cis-eGenes of glucose homeostasis trait-associated SNPs from MAGIC 
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Caucasians. Cis-eSNPs for 12 genes (APIP, ASAP3, BCS1L, GIN1, HSPA1B, PPP1CB, 
RABEP1, RPP40, SNX17, TMEM60, TOM1, and UHRF1BP1) were associated with BMI 

in AAAGC African Americans and were also associated with glucose homeostasis 

phenotypes in MAGIC Caucasians. Thus, regulatory SNP-mediated modulation of the 

transcript expression of some target genes may modulate susceptibility to T2D and related 

gluco-metabolic phenotypes in individuals with either African or European ancestry.

In conclusion, this study identified genetic loci influencing the expression of several genes in 

adipose and muscle of African Americans. Additionally, this study provides data on 

molecular mechanisms putatively regulated by eSNPs and sequentially modulating 

susceptibility for T2D and related metabolic phenotypes in African Americans.

 Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Expression quantitative trait locus (eQTL) analysis identified regulatory 
polymorphisms for adipose and muscle tissue transcripts in African Americans
Opposing Manhattan plot showing chromosomal distribution of −log10(p-values) for 

association of all cis-SNPs (±500 kb of the transcript start and end) tested for transcripts (all 

probes representing refSeq genes) expressed in adipose and muscle. Significance threshold 

(Q-value <0.01) is marked by fluorescent yellow color lines. (A). A Venn diagram (B) shows 

common and tissue specific cis- and trans-eGenes (FDR<0.01 and selected clean probes 

representing known genes) in adipose and muscle. Top cis-eSNPs for 317 transcripts showed 

the same direction of effect in both tissues (C)
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Figure 2. Physical location of cis-eSNPs with respect to transcription start sites of each gene
Distance distribution of each transcript’s most strongly associated cis-eSNPs (FDR<0.01) to 

its TSS in adipose (A) and muscle (B). Each bar represents the count of top cis-eSNPs in 

10kb bins. Plots C and D show distribution of significance level (−log10 p-values) of all 

genotyped cis-eSNPs (FDR<0.01) relative to TSS in adipose and muscle.
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Figure 3. Genomic distribution and functional annotation of cis-eSNPs
Bar graph shows functional annotation of each adipose and muscle tissue transcript’s most 

strongly associated cis-eSNPs (FDR<0.01) in the genome.
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