539 research outputs found

    Lunar Surface Operations with Dual Rovers

    Get PDF
    Lunar Electric Rovers (LER) are currently being developed that are substantially more capable than the Apollo vehicle (LRN ,"). Unlike the LRV, the new LERs provide a pressurized cabin that serves as short-sleeve environment for the crew of two, including sleeping accommodations and other provisions that allow for long tern stays, possibly up to 60 days, on the hear surface, without the need to replenish consumables from some outside source, such as a lander or outpost. As a consequence, significantly larger regions may be explored in the future and traverse distances may be measured in a few hundred kilometers (1, 2). However, crew safety remains an overriding concern, and methods other than "walk back", the major operational constraint of all Apollo traverses, must be implemented to assure -at any time- the safe return of the crew to the lander or outpost. This then causes current Constellation plans to envision long-tern traverses to be conducted with 2 LERs exclusively, each carrying a crew of two: in case one rover fails, the other will rescue the stranded crew and return all 4 astronauts in a single LER to base camp. Recent Desert Research and Technology Studies (DRATS) analog field tests simulated a continuous 14 day traverse (3), covering some 135 km, and included a rescue operation that transferred the crew and diverse consumables from one LER to another these successful tests add substantial realism to the development of long-term, dual rover operations. The simultaneous utilization of 2 LERs is of course totally unlike Apollo and raises interesting issues regarding science productivity and mission operations, the thrust of this note

    Desert Rats 2010 Operations Tests: Insights from the Geology Crew Members

    Get PDF
    Desert Research and Technology Studies (Desert RATS) is a multi-year series of tests of NASA hardware and operations deployed in the high desert of Arizona. Conducted annually since 1997, these activities exercise planetary surface hardware and operations in relatively harsh conditions where long-distance, multi-day roving is achievable. Such activities not only test vehicle subsystems, they also stress communications and operations systems and enable testing of science operations approaches that advance human and robotic surface exploration capabilities. Desert RATS 2010 tested two crewed rovers designed as first-generation prototypes of small pressurized vehicles, consistent with exploration architecture designs. Each rover provided the internal volume necessary for crewmembers to live and work for periods up to 14 days, as well as allowing for extravehicular activities (EVAs) through the use of rear-mounted suit ports. The 2010 test was designed to simulate geologic science traverses over a 14-day period through a volcanic field that is analogous to volcanic terrains observed throughout the Solar System. The test was conducted between 31 August and 13 September 2010. Two crewmembers lived in and operated each rover for a week with a "shift change" on day 7, resulting in a total of eight test subjects for the two-week period. Each crew consisted of an engineer/commander and an experienced field geologist. Three of the engineer/commanders were experienced astronauts with at least one Space Shuttle flight. The field geologists were drawn from the scientific community, based on funded and published field expertise

    Conducting Planetary Field Geology on EVA: Lessons from the 2010 DRATS Geologist Crewmembers

    Get PDF
    In order to prepare for the next phase of planetary surface exploration, the Desert Research and Technology Studies (DRATS) field program seeks to test the next generation of technology needed to explore other surfaces. The 2010 DRATS 14-day field campaign focused on the simultaneous operation of two habitatable rovers, or Space Exploration Vehicles (SEVs). Each rover was crewed by one astronaut/commander and one geologist, with a change in crews on day seven of the mission. This shift change allowed for eight crew members to test the DRATS technology and operational protocols [1,2]. The insights presented in this abstract represent the crew s thoughts on lessons learned from this field season, as well as potential future testing concepts

    On optimal control problems with controls appearing nonlinearly in an elliptic state equation

    Get PDF
    An optimal control problem for a semilinear elliptic equation is discussed, where the control appears nonlinearly in the state equation but is not included in the objective functional. The existence of optimal controls is proved by a measurable selection technique. First-order necessary optimality conditions are derived and two types of second-order sufficient optimality conditions are established. A first theorem invokes a well-known assumption on the set of zeros of the switching function. A second relies on coercivity of the second derivative of the reduced objective functional. The results are applied to the convergence of optimal state functions for a finite element discretizion of the control problem.The first author was partially supported by the Spanish Ministerio de Economía y Competitividad under project MTM2017-83185-P

    Lessons Learned for Geologic Data Collection and Sampling: Insights from the Desert RATS 2010 Geologist Crewmembers

    Get PDF
    Since 1997, Desert Research and Technology Studies (D-RATS) has conducted hardware and operations tests in the Arizona desert that advance human and robotic planetary exploration capabilities. D-RATS 2010 (8/31-9/13) simulated geologic traverses through a terrain of cinder cones, lava flows, and underlying sedimentary units using a pair of crewed rovers and extravehicular activities (EVAs) for geologic fieldwork. There were two sets of crews, each consisting of an engineer/commander and an experienced field geologist drawn from the academic community. A major objective of D-RATS was to examine the functions of a science support team, the roles of geologist crewmembers, and protocols, tools, and technologies needed for effective data collection and sample documentation. Solutions to these problems must consider how terrestrial field geology must be adapted to geologic fieldwork during EVA

    Development of the ChatGPT, Generative Artificial Intelligence and Natural Large Language Models for Accountable Reporting and Use (CANGARU) Guidelines

    Full text link
    The swift progress and ubiquitous adoption of Generative AI (GAI), Generative Pre-trained Transformers (GPTs), and large language models (LLMs) like ChatGPT, have spurred queries about their ethical application, use, and disclosure in scholarly research and scientific productions. A few publishers and journals have recently created their own sets of rules; however, the absence of a unified approach may lead to a 'Babel Tower Effect,' potentially resulting in confusion rather than desired standardization. In response to this, we present the ChatGPT, Generative Artificial Intelligence, and Natural Large Language Models for Accountable Reporting and Use Guidelines (CANGARU) initiative, with the aim of fostering a cross-disciplinary global inclusive consensus on the ethical use, disclosure, and proper reporting of GAI/GPT/LLM technologies in academia. The present protocol consists of four distinct parts: a) an ongoing systematic review of GAI/GPT/LLM applications to understand the linked ideas, findings, and reporting standards in scholarly research, and to formulate guidelines for its use and disclosure, b) a bibliometric analysis of existing author guidelines in journals that mention GAI/GPT/LLM, with the goal of evaluating existing guidelines, analyzing the disparity in their recommendations, and identifying common rules that can be brought into the Delphi consensus process, c) a Delphi survey to establish agreement on the items for the guidelines, ensuring principled GAI/GPT/LLM use, disclosure, and reporting in academia, and d) the subsequent development and dissemination of the finalized guidelines and their supplementary explanation and elaboration documents.Comment: 20 pages, 1 figure, protoco

    Bibliometric Analysis of Publisher and Journal Instructions to Authors on Generative-AI in Academic and Scientific Publishing

    Full text link
    We aim to determine the extent and content of guidance for authors regarding the use of generative-AI (GAI), Generative Pretrained models (GPTs) and Large Language Models (LLMs) powered tools among the top 100 academic publishers and journals in science. The websites of these publishers and journals were screened from between 19th and 20th May 2023. Among the largest 100 publishers, 17% provided guidance on the use of GAI, of which 12 (70.6%) were among the top 25 publishers. Among the top 100 journals, 70% have provided guidance on GAI. Of those with guidance, 94.1% of publishers and 95.7% of journals prohibited the inclusion of GAI as an author. Four journals (5.7%) explicitly prohibit the use of GAI in the generation of a manuscript, while 3 (17.6%) publishers and 15 (21.4%) journals indicated their guidance exclusively applies to the writing process. When disclosing the use of GAI, 42.8% of publishers and 44.3% of journals included specific disclosure criteria. There was variability in guidance of where to disclose the use of GAI, including in the methods, acknowledgments, cover letter, or a new section. There was also variability in how to access GAI guidance and the linking of journal and publisher instructions to authors. There is a lack of guidance by some top publishers and journals on the use of GAI by authors. Among those publishers and journals that provide guidance, there is substantial heterogeneity in the allowable uses of GAI and in how it should be disclosed, with this heterogeneity persisting among affiliated publishers and journals in some instances. The lack of standardization burdens authors and threatens to limit the effectiveness of these regulations. There is a need for standardized guidelines in order to protect the integrity of scientific output as GAI continues to grow in popularity.Comment: Pages 16, 1 figure, 2 table

    Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    Get PDF
    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone

    Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    Get PDF
    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone
    corecore