191 research outputs found

    Processing and Properties of High-Entropy Ultra-High Temperature Carbides

    Get PDF
    The research was supported by the EPSRC Programme Grant XMAT [EP/K008749/2]. The authors gratefully acknowledge the financial support from projects: APVV-15-0469 & VEGA 2/0163/16

    Flash spark plasma sintering of UHTCs

    Get PDF
    During the five year XMat research project supported by EPSRC (Engineering and Physical Sciences Research Council, UK) at Queen Mary we developed a novel sintering technique called Flash Spark Plasma Sintering (FSPS[1]) which is particularly suitable for the ultrarapid (a few seconds) consolidation of UHTCs. As in the case of incandescent lamps, flash sintering techniques use localized Joule heating developed within the consolidating particles using typically a die-less configuration. Heating rates are extreme (104–106 °C/min), and the sintering temperature is therefore reached extremely rapidly. The research covered mostly metallic conductors (ZrB2[2], HfB2,TiB2) and semiconductors (B4C, SiC and their composites). The talk will summarize the joint XMat team efforts to: -Identify the FSPS consolidation mechanism using modelling and transmission electron microscopy, -Characterise the structural properties for the bulk materials and redefine the structure-property relationships of FSPSed materials Please click Additional Files below to see the full abstract

    Breaking of four-fold lattice symmetry in a model for pnictide superconductors

    Full text link
    We investigate the interplay of onsite Coulomb repulsion and various mechanisms breaking the fourfold lattice symmetry in a three-band model for the iron planes of iron-based superconductors. Using cluster-perturbation theory allows us to locally break the symmetry between the x- and y-directions without imposing long-range magnetic order. Previously investigated anisotropic magnetic couplings are compared to an orbital-ordering field and anisotropic hoppings. We find that all three mechanisms for a broken rotational symmetry lead to similar signatures once onsite interactions are strong enough to bring the system close to a spin-density wave. The band distortions near the Fermi level are independent of differences between the total densities found in xz and yz orbitals

    Brazilian Consensus on Photoprotection

    Full text link

    Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures

    Get PDF
    Funder: 2017 SGR 329 Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706)Funder: This article is based upon work from COST Action StableNextSol MP1307 supported by COST (European Cooperation in Science and Technology). M. V. K., E. A. K., V. B., and A. Osherov thank the financial support of the United States – Israel Binational Science Foundation (grant no. 2015757). E. A. K., A. A., and I. V.-F. acknowledge a partial support from the SNaPSHoTs project in the framework of the German-Israeli bilateral R&D cooperation in the field of applied nanotechnology. M. S. L. thanks the financial support of NSF (ECCS, award #1610833). S. C., M. Manceau and M. Matheron thank the financial support of European Union’s Horizon 2020 research and innovation programme under grant agreement No 763989 (APOLO project). F. De R. and T. M. W. would like to acknowledge the support from the Engineering and Physical Sciences Research Council (EPSRC) through the SPECIFIC Innovation and Knowledge Centre (EP/N020863/1) and express their gratitude to the Welsh Government for their support of the Ser Solar programme. P. A. T. acknowledges financial support from Russian Science Foundation (project No. 19-73-30020). J.K. acknowledges the support by the Solar Photovoltaic Academic Research Consortium II (SPARC II) project, gratefully funded by WEFO. M.K.N. acknowledges financial support from Innosuisse project 25590.1 PFNM-NM, Solaronix, Aubonne, Switzerland. C.-Q. M. would like to acknowledge The Bureau of International Cooperation of Chinese Academy of Sciences for the support of ISOS11 and the Ministry of Science and Technology of China for the financial support (No 2016YFA0200700). N.G.P. acknowledges financial support from the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT Future Planning (MSIP) of Korea under contracts NRF-2012M3A6A7054861 and NRF-2014M3A6A7060583 (Global Frontier R&D Program on Center for Multiscale Energy System). CSIRO’s contribution to this work was conducted with funding support from the Australian Renewable Energy Agency (ARENA) through its Advancing Renewables Program. A. F. N gratefully acknowledges support from FAPESP (Grant 2017/11986-5) and Shell and the strategic importance of the support given by ANP (Brazil’s National Oil, Natural Gas and Biofuels Agency) through the R&D levy regulation. Y.-L.L. and Q.B. acknowledge support from the National Science Foundation Division of Civil, Mechanical and Manufacturing Innovation under award #1824674. S.D.S. acknowledges the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement No. 756962), and the Royal Society and Tata Group (UF150033). The work at the National Renewable Energy Laboratory was supported by the U.S. Department of Energy (DOE) under contract DE-AC36-08GO28308 with Alliance for Sustainable Energy LLC, the manager and operator of the National Renewable Energy Laboratory. The authors (J.J.B, J.M.L., M.O.R, K.Z.) acknowledge support from the De-risking halide perovskite solar cells program of the National Center for Photovoltaics, funded by the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes. H.J.S. acknowledges the support of EPSRC UK, Engineering and Physical Sciences Research Council. V.T. and M. Madsen acknowledges ‘Villum Foundation’ for funding of the project CompliantPV, under project number 13365. M. Madsen acknowledges Danmarks Frie Forskningsfond, DFF FTP for funding of the project React-PV, No. 8022-00389B. M.G. and S.M.Z. thank the King Abdulaziz City for Science and technology (KACST) for financial support. S.V. acknowledges TKI-UE/Ministry of Economic Affairs for financial support of the TKI-UE toeslag project POP-ART (No. 1621103). M.L.C. and H.X. acknowledges the support from Spanish MINECO for the grant GraPErOs (ENE2016-79282-C5-2-R), the OrgEnergy Excellence Network CTQ2016-81911- REDT, the Agència de Gestiód'Ajuts Universitaris i de Recerca (AGAUR) for the support to the consolidated Catalonia research group 2017 SGR 329 and the Xarxa de Referència en Materials Avançats per a l'Energia (Xarmae). ICN2 is supported by the Severo Ochoa program from Spanish MINECO (Grant No. SEV-2017-0706) and is funded by the CERCA Programme / Generalitat de Catalunya.Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis

    Dismantling of end life vehicles as part of the recycling proces – obligations of entrepreneurs

    No full text
    Nowadays, where the increase of number of vehicles on Polish roads is a noticeable phenomenon, an important issue is the recycling of end of life vehicles. The article presents the potential for recycling automotive sector in our country, which depends on many factors. These include number of newly registered cars, imported cars from EU countries and their age. Presented estimates are based on data from the Central Statistical Office and informations taken from portal Polish Automotive Industry Association. The second part of the paper consists of an analysis of entrepreneurs obligations who decides to carry out dismantling station life vehicles.W dzisiejszych czasach, gdzie zauważalnym zjawiskiem jest wzrost liczby pojazdów na polskich drogach, ważnym zagadnieniem jest recykling pojazdów wycofanych z eksploatacji. W artykule zaprezentowano potencjał recyklingowy sektoru motoryzacyjnego w naszym kraju, który zależy od wielu czynników. Zaliczyć do nich należy liczbę nowo rejestrowanych pojazdów, import pojazdów z państw unijnych oraz ich wiek. Zaprezentowane w pracy szacunki w odniesieniu do nowo rejestrowanych pojazdów na terenie Polski ich wieku, a także masy odpadów powstałych w trakcie demontażu oraz odpadów przeznaczonych na proces odzysku i recyklingu dokonane zostały dzięki danym zaczerpniętym z Głównego Urzędu Statystycznego oraz informacji zawartych na portalu Polskiego Związku Przemysłu Motoryzacyjnego. Na drugą część pracy składa się analiza obowiązków przedsiębiorcy, który decyduje się na prowadzenie stacji demontażu pojazdów wycofanych z eksploatacji

    Wykorzystanie metod scenariuszowych do opracowania scenariuszy rozwoju technologii. Aspekt teoretyczno-praktyczny

    No full text
    Scenario methods enjoy strong popularity, especially in a situation of changes with discontinuous characteristics. Thanks to their application, we can identify factors of the environment that can have a significant impact on the functioning of companies and regions. The use of scenarios for the analysis of technology development is an expression of openness to changes taking place in the environment. Thanks to them, it is possible to track changes, redefine strategic assumptions, and consider decisions made. This paper presents assumptions of scenario methods and practically uses the environment status scenario method to formulate development scenarios of Intelligent Systems technology in Małopolska.Metody scenariuszowe cieszą się niesłabnącą popularnością, zwłaszcza w sytuacji zmian o charakterze cech nieciągłych. Dzięki ich zastosowaniu możemy dokonać identyfikacji czynników otoczenia, które mogą mieć istotny wpływ na funkcjonowanie przedsiębiorstw, regionów. Wykorzystywanie scenariuszy do analizy rozwoju technologii jest wyrazem otwartości na zmiany zachodzące w otoczeniu. Dzięki nim możliwe jest śledzenie zmian, redefiniowanie założeń strategicznych i podejmowanych decyzji. W niniejszym artykule zaprezentowano założenia metod scenariuszowych oraz praktycznie wykorzystano metodę scenariuszy stanów otoczenia do formułowania scenariuszy rozwoju technologii systemy inteligentne w Małopolsce
    corecore