7,700 research outputs found

    A Workplace Divided: How Americans View Discrimination and Race on the Job

    Get PDF
    In this Work Trends survey, American workers express their views on the contentious issue of discrimination in the workplace -- how they perceive and experience discrimination as well as what they expect government and employers to do about it

    Analytical ultrasonics for evaluation of composite materials response. Part 1: Physical interpretation

    Get PDF
    The phenomena associated with the propagation of elastic waves in anisotropic materials are discussed. Wave modes propagating in general directions relative to the material coordinate system are not purely longitudinal nor transverse. Hence the generation of ultrasonic waves by common piezoelectric transducers will generate multiple modes to some extent. The received signals will likely be a combination of different modes. When using two transducers to send and receive ultrasonic waves, deviation of the energy flux vector may reduce the apparent value of the received signal unless the proper orientation of the two transducers with respect to one another is taken into account. And application of reflection from plane boundaries for the purposes of making certain measurements may lead to misinterpretation of results unless one is aware of the differences in multiple mode generation and critical angle phenomena between isotropic and anisotropic materials. When studies or characterizations of composite materials by ultrasonics are to be performed, these phenomena must be taken into consideration so that proper and correct application and interpretation of the measurements can be made. Finally, attention must be drawn again to the fact that composite materials are heterogeneous by definition. The results discussed here have been determined for homogeneous materials only. While the assumption of homogeneity appears to be valid for certain wavelength ranges in composites, future work must continue to study the phenomena of wave propagation in anisotropic, nonhomogeneous materials

    Rapid prototyping facility for flight research in artificial-intelligence-based flight systems concepts

    Get PDF
    The Dryden Flight Research Facility of the NASA Ames Research Facility of the NASA Ames Research Center is developing a rapid prototyping facility for flight research in flight systems concepts that are based on artificial intelligence (AI). The facility will include real-time high-fidelity aircraft simulators, conventional and symbolic processors, and a high-performance research aircraft specially modified to accept commands from the ground-based AI computers. This facility is being developed as part of the NASA-DARPA automated wingman program. This document discusses the need for flight research and for a national flight research facility for the rapid prototyping of AI-based avionics systems and the NASA response to those needs

    Development of a knowledge acquisition tool for an expert system flight status monitor

    Get PDF
    Two of the main issues in artificial intelligence today are knowledge acquisition dion and knowledge representation. The Dryden Flight Research Facility of NASA's Ames Research Center is presently involved in the design and implementation of an expert system flight status monitor that will provide expertise and knowledge to aid the flight systems engineer in monitoring today's advanced high-performance aircraft. The flight status monitor can be divided into two sections: the expert system itself and the knowledge acquisition tool. The knowledge acquisition tool, the means it uses to extract knowledge from the domain expert, and how that knowledge is represented for computer use is discussed. An actual aircraft system has been codified by this tool with great success. Future real-time use of the expert system has been facilitated by using the knowledge acquisition tool to easily generate a logically consistent and complete knowledge base

    Effects of simplifying assumptions on optimal trajectory estimation for a high-performance aircraft

    Get PDF
    When analyzing the performance of an aircraft, certain simplifying assumptions, which decrease the complexity of the problem, can often be made. The degree of accuracy required in the solution may determine the extent to which these simplifying assumptions are incorporated. A complex model may yield more accurate results if it describes the real situation more thoroughly. However, a complex model usually involves more computation time, makes the analysis more difficult, and often requires more information to do the analysis. Therefore, to choose the simplifying assumptions intelligently, it is important to know what effects the assumptions may have on the calculated performance of a vehicle. Several simplifying assumptions are examined, the effects of simplified models to those of the more complex ones are compared, and conclusions are drawn about the impact of these assumptions on flight envelope generation and optimal trajectory calculation. Models which affect an aircraft are analyzed, but the implications of simplifying the model of the aircraft itself are not studied. The examples are atmospheric models, gravitational models, different models for equations of motion, and constraint conditions

    Description of an experimental expert system flight status monitor

    Get PDF
    This paper describes an experimental version of an expert system flight status monitor being developed at the Dryden Flight Research Facility of the NASA Ames Research Center. This experimental expert system flight status monitor (ESSFSM) is supported by a specialized knowledge acquisition tool that provides the user with a powerful and easy-to-use documentation and rule construction tool. The EESFSM is designed to be a testbed for concepts in rules, inference mechanisms, and knowledge structures to be used in a real-time expert system flight status monitor that will monitor the health and status of the flight control system of state-of-the-art, high-performance, research aircraft

    Development and validation of a general purpose linearization program for rigid aircraft models

    Get PDF
    A FORTRAN program that provides the user with a powerful and flexible tool for the linearization of aircraft models is discussed. The program LINEAR numerically determines a linear systems model using nonlinear equations of motion and a user-supplied, nonlinear aerodynamic model. The system model determined by LINEAR consists of matrices for both the state and observation equations. The program has been designed to allow easy selection and definition of the state, control, and observation variables to be used in a particular model. Also, included in the report is a comparison of linear and nonlinear models for a high performance aircraft

    Design of an expert-system flight status monitor

    Get PDF
    The modern advanced avionics in new high-performance aircraft strains the capability of current technology to safely monitor these systems for flight test prior to their generalized use. New techniques are needed to improve the ability of systems engineers to understand and analyze complex systems in the limited time available during crucial periods of the flight test. The Dryden Flight Research Facility of NASA's Ames Research Center is involved in the design and implementation of an expert system to provide expertise and knowledge to aid the flight systems engineer. The need for new techniques in monitoring flight systems and the conceptual design of an expert-system flight status monitor is discussed. The status of the current project and its goals are described

    Development of control laws for a flight test maneuver autopilot for an F-15 aircraft

    Get PDF
    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. The development of control laws within the context of flight test maneuver requirements is discussed. The control laws are developed using eigensystem assignment and command generator tracking. The eigenvalues and eigenvectors are chosen to provide the necessary handling qualities, while the command generator tracking enables the tracking of a specified state during the maneuver. The effectiveness of the control laws is illustrated by their application to an F-15 aircraft to ensure acceptable aircraft performance during a maneuver

    Development of a flight test maneuver autopilot for an F-15 aircraft

    Get PDF
    An autopilot can be used to provide precise control to meet the demanding requirements of flight research maneuvers with high-performance aircraft. This paper presents the development of control laws for a flight test maneuver autopilot for an F-15 aircraft. A linear quadratic regulator approach is used to develop the control laws within the context of flight test maneuver requirements by treating the maneuver as a finite time tracking problem with regulation of state rates. Results are presented to show the effectiveness of the controller in insuring acceptable aircraft performance during a maneuver
    corecore