303 research outputs found
Blow-up solutions for linear perturbations of the Yamabe equation
For a smooth, compact Riemannian manifold (M,g) of dimension N \geg 3, we
are interested in the critical equation where \Delta_g is the Laplace--Beltrami
operator, S_g is the Scalar curvature of (M,g), , and
is a small parameter
Heat flow method to Lichnerowicz type equation on closed manifolds
In this paper, we establish existence results for positive solutions to the
Lichnerowicz equation of the following type in closed manifolds -\Delta
u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M, where , and ,
are given smooth functions. Our analysis is based on the global
existence of positive solutions to the following heat equation {ll} u_t-\Delta
u=A(x)u^{-p}-B(x)u^{q},\quad in\quad M\times\mathbb{R}^{+}, u(x,0)=u_0,\quad
in\quad M with the positive smooth initial data .Comment: 10 page
Nonlinear Klein-Gordon-Maxwell systems with Neumann boundary conditions on a Riemannian manifold with boundary
Let (M,g) be a smooth compact, n dimensional Riemannian manifold, n=3,4 with
smooth n-1 dimensional boundary. We search the positive solutions of the
singularly perturbed Klein Gordon Maxwell Proca system with homogeneous Neumann
boundary conditions or for the singularly perturbed Klein Gordon Maxwell system
with mixed Dirichlet Neumann homogeneous boundary conditions. We prove that
stable critical points of the mean curvature of the boundary generates
solutions when the perturbation parameter is sufficiently small.Comment: arXiv admin note: text overlap with arXiv:1410.884
Sharp constants in weighted trace inequalities on Riemannian manifolds
We establish some sharp weighted trace inequalities
W^{1,2}(\rho^{1-2\sigma}, M)\hookrightarrow L^{\frac{2n}{n-2\sigma}}(\pa M)
on dimensional compact smooth manifolds with smooth boundaries, where
is a defining function of and . This is stimulated
by some recent work on fractional (conformal) Laplacians and related problems
in conformal geometry, and also motivated by a conjecture of Aubin.Comment: 34 page
A compactness theorem for scalar-flat metrics on manifolds with boundary
Let (M,g) be a compact Riemannian manifold with boundary. This paper is
concerned with the set of scalar-flat metrics which are in the conformal class
of g and have the boundary as a constant mean curvature hypersurface. We prove
that this set is compact for dimensions greater than or equal to 7 under the
generic condition that the trace-free 2nd fundamental form of the boundary is
nonzero everywhere.Comment: 49 pages. Final version, to appear in Calc. Var. Partial Differential
Equation
A threshold phenomenon for embeddings of into Orlicz spaces
We consider a sequence of positive smooth critical points of the
Adams-Moser-Trudinger embedding of into Orlicz spaces. We study its
concentration-compactness behavior and show that if the sequence is not
precompact, then the liminf of the -norms of the functions is greater
than or equal to a positive geometric constant.Comment: 14 Page
Association between birth weight and visceral fat in adults
Background: Several studies reported inverse associations between birth weight and central adiposity in adults. However, few studies investigated the contributions of different abdominal fat compartments. Objective: We examined associations between birth weight and adult visceral and subcutaneous abdominal fat in the population-based Fenland study. Design: A total of 1092 adults (437 men and 655 women) aged 3055 y had available data on reported birth weight, standard anthropometric measures, and visceral and subcutaneous abdominal fat estimated by ultrasound. In a subgroup (n = 766), dual-energy X-ray absorptiometry assessment of total abdominal fat was performed. Linear regression models were used to analyze relations between birth weight and the various fat variables adjusted for sex, age, education, smoking, and body mass index (BMI). Results: After adjustment for adult BMI, there was an inverse association between birth weight and total abdominal fat [B (partial regression coefficient expressed as SD/1-kg change in birth weight) = -0.09, P = 0.002] and visceral fat (B = -0.07, P = 0.01) but not between birth weight and subcutaneous abdominal fat (B = -0.01, P = 0.3). Tests for interaction showed that adult BMI modified the association between birth weight and visceral fat (P for interaction = 0.01). In stratified analysis, the association between birth weight and visceral fat was apparent only in individuals with the highest BMI tertile (B = -0.08, P = 0.04). Conclusions: The inverse association between birth weight and adult abdominal fat appeared to be specific to visceral fat. However, associations with birth weight were apparent only after adjustment for adult BMI. Therefore, we suggest that rapid postnatal weight gain, rather than birth weight alone, leads to increased visceral fat. Am J Clin Nutr 2010; 92: 347-52
Second order optimality conditions and their role in PDE control
If f : Rn R is twice continuously differentiable, fâ(u) = 0 and fââ(u) is positive definite, then u is a local minimizer of f. This paper surveys the extension of this well known second order suffcient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled order sufficient optimality condition to the case f : U R, where U is an infinite-dimensional linear normed space. The reader will be guided from the case of finite-dimensions via a brief discussion of the calculus of variations and the optimal control of ordinary differential equations to the control of nonlinear partial differential equations, where U is a function space. In particular, the following questions will be addressed: Is the extension to infinite dimensions straightforward or will unexpected difficulties occur? How second order sufficient optimality conditions must be modified, if simple inequality constraints are imposed on u? Why do we need second order conditions and how can they be applied? If they are important, are we able to check if they are fulfilled?
It turns out that infinite dimensions cause new difficulties that do not occur in finite dimensions. We will be faced with the surprising fact that the space, where fââ(u) exists can be useless to ensure positive definiteness of the quadratic form v fââ(u)v2. In this context, the famous two-norm discrepancy, its consequences, and techniques for overcoming this difficulty are explained. To keep the presentation simple, the theory is developed for problems in function spaces with simple box constraints of the form a = u = Ă. The theory of second order conditions in the control of partial differential equations is presented exemplarily for the nonlinear heat equation. Different types of critical cones are introduced, where the positivity of fââ(u) must be required. Their form depends on whether a so-called Tikhonov regularization term is part of the functional f or not. In this context, the paper contains also new results that lead to quadratic growth conditions in the strong sense.
As a first application of second-order sufficient conditions, the stability of optimal solutions with respect to perturbations of the data of the control problem is discussed. Second, their use in analyzing the discretization of control problems by finite elements is studied. A survey on further related topics, open questions, and relevant literature concludes the paper.The first author was partially supported by the Spanish Ministerio de EconomĂa y Competitividad under project MTM2011-22711, the second author by DFG in the framework of the Collaborative Research Center SFB 910, project B6
Breakup reaction models for two- and three-cluster projectiles
Breakup reactions are one of the main tools for the study of exotic nuclei,
and in particular of their continuum. In order to get valuable information from
measurements, a precise reaction model coupled to a fair description of the
projectile is needed. We assume that the projectile initially possesses a
cluster structure, which is revealed by the dissociation process. This
structure is described by a few-body Hamiltonian involving effective forces
between the clusters. Within this assumption, we review various reaction
models. In semiclassical models, the projectile-target relative motion is
described by a classical trajectory and the reaction properties are deduced by
solving a time-dependent Schroedinger equation. We then describe the principle
and variants of the eikonal approximation: the dynamical eikonal approximation,
the standard eikonal approximation, and a corrected version avoiding Coulomb
divergence. Finally, we present the continuum-discretized coupled-channel
method (CDCC), in which the Schroedinger equation is solved with the projectile
continuum approximated by square-integrable states. These models are first
illustrated by applications to two-cluster projectiles for studies of nuclei
far from stability and of reactions useful in astrophysics. Recent extensions
to three-cluster projectiles, like two-neutron halo nuclei, are then presented
and discussed. We end this review with some views of the future in
breakup-reaction theory.Comment: Will constitute a chapter of "Clusters in Nuclei - Vol.2." to be
published as a volume of "Lecture Notes in Physics" (Springer
Effects of the number of markers per haplotype and clustering of haplotypes on the accuracy of QTL mapping and prediction of genomic breeding values
The aim of this paper was to compare the effect of haplotype definition on the precision of QTL-mapping and on the accuracy of predicted genomic breeding values. In a multiple QTL model using identity-by-descent (IBD) probabilities between haplotypes, various haplotype definitions were tested i.e. including 2, 6, 12 or 20 marker alleles and clustering base haplotypes related with an IBD probability of > 0.55, 0.75 or 0.95. Simulated data contained 1100 animals with known genotypes and phenotypes and 1000 animals with known genotypes and unknown phenotypes. Genomes comprising 3 Morgan were simulated and contained 74 polymorphic QTL and 383 polymorphic SNP markers with an average r2 value of 0.14 between adjacent markers. The total number of haplotypes decreased up to 50% when the window size was increased from two to 20 markers and decreased by at least 50% when haplotypes related with an IBD probability of > 0.55 instead of > 0.95 were clustered. An intermediate window size led to more precise QTL mapping. Window size and clustering had a limited effect on the accuracy of predicted total breeding values, ranging from 0.79 to 0.81. Our conclusion is that different optimal window sizes should be used in QTL-mapping versus genome-wide breeding value prediction
- âŠ